false

Investigating Similarities Across Decentralized Financial (DeFi) Services

Investigating Similarities Across Decentralized Financial (DeFi) Services ArXiv ID: 2404.00034 “View on arXiv” Authors: Unknown Abstract We explore the adoption of graph representation learning (GRL) algorithms to investigate similarities across services offered by Decentralized Finance (DeFi) protocols. Following existing literature, we use Ethereum transaction data to identify the DeFi building blocks. These are sets of protocol-specific smart contracts that are utilized in combination within single transactions and encapsulate the logic to conduct specific financial services such as swapping or lending cryptoassets. We propose a method to categorize these blocks into clusters based on their smart contract attributes and the graph structure of their smart contract calls. We employ GRL to create embedding vectors from building blocks and agglomerative models for clustering them. To evaluate whether they are effectively grouped in clusters of similar functionalities, we associate them with eight financial functionality categories and use this information as the target label. We find that in the best-case scenario purity reaches .888. We use additional information to associate the building blocks with protocol-specific target labels, obtaining comparable purity (.864) but higher V-Measure (.571); we discuss plausible explanations for this difference. In summary, this method helps categorize existing financial products offered by DeFi protocols, and can effectively automatize the detection of similar DeFi services, especially within protocols. ...

March 23, 2024 · 2 min · Research Team

Multi-relational Graph Diffusion Neural Network with Parallel Retention for Stock Trends Classification

Multi-relational Graph Diffusion Neural Network with Parallel Retention for Stock Trends Classification ArXiv ID: 2401.05430 “View on arXiv” Authors: Unknown Abstract Stock trend classification remains a fundamental yet challenging task, owing to the intricate time-evolving dynamics between and within stocks. To tackle these two challenges, we propose a graph-based representation learning approach aimed at predicting the future movements of multiple stocks. Initially, we model the complex time-varying relationships between stocks by generating dynamic multi-relational stock graphs. This is achieved through a novel edge generation algorithm that leverages information entropy and signal energy to quantify the intensity and directionality of inter-stock relations on each trading day. Then, we further refine these initial graphs through a stochastic multi-relational diffusion process, adaptively learning task-optimal edges. Subsequently, we implement a decoupled representation learning scheme with parallel retention to obtain the final graph representation. This strategy better captures the unique temporal features within individual stocks while also capturing the overall structure of the stock graph. Comprehensive experiments conducted on real-world datasets from two US markets (NASDAQ and NYSE) and one Chinese market (Shanghai Stock Exchange: SSE) validate the effectiveness of our method. Our approach consistently outperforms state-of-the-art baselines in forecasting next trading day stock trends across three test periods spanning seven years. Datasets and code have been released (https://github.com/pixelhero98/MGDPR). ...

January 5, 2024 · 2 min · Research Team