false

A mathematical study of the excess growth rate

A mathematical study of the excess growth rate ArXiv ID: 2510.25740 “View on arXiv” Authors: Steven Campbell, Ting-Kam Leonard Wong Abstract We study the excess growth rate – a fundamental logarithmic functional arising in portfolio theory – from the perspective of information theory. We show that the excess growth rate can be connected to the Rényi and cross entropies, the Helmholtz free energy, L. Campbell’s measure of average code length and large deviations. Our main results consist of three axiomatic characterization theorems of the excess growth rate, in terms of (i) the relative entropy, (ii) the gap in Jensen’s inequality, and (iii) the logarithmic divergence that generalizes the Bregman divergence. Furthermore, we study maximization of the excess growth rate and compare it with the growth optimal portfolio. Our results not only provide theoretical justifications of the significance of the excess growth rate, but also establish new connections between information theory and quantitative finance. ...

October 29, 2025 · 2 min · Research Team

Signature Methods in Stochastic Portfolio Theory

Signature Methods in Stochastic Portfolio Theory ArXiv ID: 2310.02322 “View on arXiv” Authors: Unknown Abstract In the context of stochastic portfolio theory we introduce a novel class of portfolios which we call linear path-functional portfolios. These are portfolios which are determined by certain transformations of linear functions of a collections of feature maps that are non-anticipative path functionals of an underlying semimartingale. As main example for such feature maps we consider the signature of the (ranked) market weights. We prove that these portfolios are universal in the sense that every continuous, possibly path-dependent, portfolio function of the market weights can be uniformly approximated by signature portfolios. We also show that signature portfolios can approximate the growth-optimal portfolio in several classes of non-Markovian market models arbitrarily well and illustrate numerically that the trained signature portfolios are remarkably close to the theoretical growth-optimal portfolios. Besides these universality features, the main numerical advantage lies in the fact that several optimization tasks like maximizing (expected) logarithmic wealth or mean-variance optimization within the class of linear path-functional portfolios reduce to a convex quadratic optimization problem, thus making it computationally highly tractable. We apply our method also to real market data based on several indices. Our results point towards out-performance on the considered out-of-sample data, also in the presence of transaction costs. ...

October 3, 2023 · 2 min · Research Team