false

Marketron Through the Looking Glass: From Equity Dynamics to Option Pricing in Incomplete Markets

Marketron Through the Looking Glass: From Equity Dynamics to Option Pricing in Incomplete Markets ArXiv ID: 2508.09863 “View on arXiv” Authors: Igor Halperin, Andrey Itkin Abstract The Marketron model, introduced by [“Halperin, Itkin, 2025”], describes price formation in inelastic markets as the nonlinear diffusion of a quasiparticle (the marketron) in a multidimensional space comprising the log-price $x$, a memory variable $y$ encoding past money flows, and unobservable return predictors $z$. While the original work calibrated the model to S&P 500 time series data, this paper extends the framework to option markets - a fundamentally distinct challenge due to market incompleteness stemming from non-tradable state variables. We develop a utility-based pricing approach that constructs a risk-adjusted measure via the dual solution of an optimal investment problem. The resulting Hamilton-Jacobi-Bellman (HJB) equation, though computationally formidable, is solved using a novel methodology enabling efficient calibration even on standard laptop hardware. Having done that, we look at the additional question to answer: whether the Marketron model, calibrated to market option prices, can simultaneously reproduce the statistical properties of the underlying asset’s log-returns. We discuss our results in view of the long-standing challenge in quantitative finance of developing an unified framework capable of jointly capturing equity returns, option smile dynamics, and potentially volatility index behavior. ...

August 13, 2025 · 2 min · Research Team

Mean-variance portfolio selection in jump-diffusion model under no-shorting constraint: A viscosity solution approach

Mean-variance portfolio selection in jump-diffusion model under no-shorting constraint: A viscosity solution approach ArXiv ID: 2406.03709 “View on arXiv” Authors: Unknown Abstract This paper concerns a continuous time mean-variance (MV) portfolio selection problem in a jump-diffusion financial model with no-shorting trading constraint. The problem is reduced to two subproblems: solving a stochastic linear-quadratic (LQ) control problem under control constraint, and finding a maximal point of a real function. Based on a two-dimensional fully coupled ordinary differential equation (ODE), we construct an explicit viscosity solution to the Hamilton-Jacobi-Bellman equation of the constrained LQ problem. Together with the Meyer-Itô formula and a verification procedure, we obtain the optimal feedback controls of the constrained LQ problem and the original MV problem, which corrects the flawed results in some existing literatures. In addition, closed-form efficient portfolio and efficient frontier are derived. In the end, we present several examples where the two-dimensional ODE is decoupled. ...

June 6, 2024 · 2 min · Research Team

Market Making in Spot Precious Metals

Market Making in Spot Precious Metals ArXiv ID: 2404.15478 “View on arXiv” Authors: Unknown Abstract The primary challenge of market making in spot precious metals is navigating the liquidity that is mainly provided by futures contracts. The Exchange for Physical (EFP) spread, which is the price difference between futures and spot, plays a pivotal role and exhibits multiple modes of relaxation corresponding to the diverse trading horizons of market participants. In this paper, we model the EFP spread using a nested Ornstein-Uhlenbeck process, in the spirit of the two-factor Hull-White model for interest rates. We demonstrate the suitability of the framework for maximizing the expected P&L of a market maker while minimizing inventory risk across both spot and futures. Using a computationally efficient technique to approximate the solution of the Hamilton-Jacobi-Bellman equation associated with the corresponding stochastic optimal control problem, our methodology facilitates strategy optimization on demand in near real-time, paving the way for advanced algorithmic market making that capitalizes on the co-integration properties intrinsic to the precious metals sector. ...

April 23, 2024 · 2 min · Research Team

Optimal dividend strategies for a catastrophe insurer

Optimal dividend strategies for a catastrophe insurer ArXiv ID: 2311.05781 “View on arXiv” Authors: Unknown Abstract In this paper we study the problem of optimally paying out dividends from an insurance portfolio, when the criterion is to maximize the expected discounted dividends over the lifetime of the company and the portfolio contains claims due to natural catastrophes, modelled by a shot-noise Cox claim number process. The optimal value function of the resulting two-dimensional stochastic control problem is shown to be the smallest viscosity supersolution of a corresponding Hamilton-Jacobi-Bellman equation, and we prove that it can be uniformly approximated through a discretization of the space of the free surplus of the portfolio and the current claim intensity level. We implement the resulting numerical scheme to identify optimal dividend strategies for such a natural catastrophe insurer, and it is shown that the nature of the barrier and band strategies known from the classical models with constant Poisson claim intensity carry over in a certain way to this more general situation, leading to action and non-action regions for the dividend payments as a function of the current surplus and intensity level. We also discuss some interpretations in terms of upward potential for shareholders when including a catastrophe sector in the portfolio. ...

November 9, 2023 · 2 min · Research Team