false

A Space Mapping approach for the calibration of financial models with the application to the Heston model

A Space Mapping approach for the calibration of financial models with the application to the Heston model ArXiv ID: 2501.14521 “View on arXiv” Authors: Unknown Abstract We present a novel approach for parameter calibration of the Heston model for pricing an Asian put option, namely space mapping. Since few parameters of the Heston model can be directly extracted from real market data, calibration to real market data is implicit and therefore a challenging task. In addition, some of the parameters in the model are non-linear, which makes it difficult to find the global minimum of the optimization problem within the calibration. Our approach is based on the idea of space mapping, exploiting the residuum of a coarse surrogate model that allows optimization and a fine model that needs to be calibrated. In our case, the pricing of an Asian option using the Heston model SDE is the fine model, and the surrogate is chosen to be the Heston model PDE pricing a European option. We formally derive a gradient descent algorithm for the PDE constrained calibration model using well-known techniques from optimization with PDEs. Our main goal is to provide evidence that the space mapping approach can be useful in financial calibration tasks. Numerical results underline the feasibility of our approach. ...

January 24, 2025 · 2 min · Research Team

Simulation of square-root processes made simple: applications to the Heston model

Simulation of square-root processes made simple: applications to the Heston model ArXiv ID: 2412.11264 “View on arXiv” Authors: Unknown Abstract We introduce a simple, efficient and accurate nonnegative preserving numerical scheme for simulating the square-root process. The novel idea is to simulate the integrated square-root process first instead of the square-root process itself. Numerical experiments on realistic parameter sets, applied for the integrated process and the Heston model, display high precision with a very low number of time steps. As a bonus, our scheme yields the exact limiting Inverse Gaussian distributions of the integrated square-root process with only one single time-step in two scenarios: (i) for high mean-reversion and volatility-of-volatility regimes, regardless of maturity; and (ii) for long maturities, independent of the other parameters. ...

December 15, 2024 · 2 min · Research Team

On the relative performance of some parametric and nonparametric estimators of option prices

On the relative performance of some parametric and nonparametric estimators of option prices ArXiv ID: 2412.00135 “View on arXiv” Authors: Unknown Abstract We examine the empirical performance of some parametric and nonparametric estimators of prices of options with a fixed time to maturity, focusing on variance-gamma and Heston models on one side, and on expansions in Hermite functions on the other side. The latter class of estimators can be seen as perturbations of the classical Black-Scholes model. The comparison between parametric and Hermite-based models having the same “degrees of freedom” is emphasized. The main criterion is the out-of-sample relative pricing error on a dataset of historical option prices on the S&P500 index. Prior to the main empirical study, the approximation of variance-gamma and Heston densities by series of Hermite functions is studied, providing explicit expressions for the coefficients of the expansion in the former case, and integral expressions involving the explicit characteristic function in the latter case. Moreover, these approximations are investigated numerically on a few test cases, indicating that expansions in Hermite functions with few terms achieve competitive accuracy in the estimation of Heston densities and the pricing of (European) options, but they perform less effectively with variance-gamma densities. On the other hand, the main large-scale empirical study show that parsimonious Hermite estimators can even outperform the Heston model in terms of pricing errors. These results underscore the trade-offs inherent in model selection and calibration, and their empirical fit in practical applications. ...

November 28, 2024 · 2 min · Research Team

Portfolio Optimization with Feedback Strategies Based on Artificial Neural Networks

Portfolio Optimization with Feedback Strategies Based on Artificial Neural Networks ArXiv ID: 2411.09899 “View on arXiv” Authors: Unknown Abstract With the recent advancements in machine learning (ML), artificial neural networks (ANN) are starting to play an increasingly important role in quantitative finance. Dynamic portfolio optimization is among many problems that have significantly benefited from a wider adoption of deep learning (DL). While most existing research has primarily focused on how DL can alleviate the curse of dimensionality when solving the Hamilton-Jacobi-Bellman (HJB) equation, some very recent developments propose to forego derivation and solution of HJB in favor of empirical utility maximization over dynamic allocation strategies expressed through ANN. In addition to being simple and transparent, this approach is universally applicable, as it is essentially agnostic about market dynamics. To showcase the method, we apply it to optimal portfolio allocation between a cash account and the S&P 500 index modeled using geometric Brownian motion or the Heston model. In both cases, the results are demonstrated to be on par with those under the theoretical optimal weights assuming isoelastic utility and real-time rebalancing. A set of R codes for a broad class of stochastic volatility models are provided as a supplement. ...

November 15, 2024 · 2 min · Research Team

Log Heston Model for Monthly Average VIX

Log Heston Model for Monthly Average VIX ArXiv ID: 2410.22471 “View on arXiv” Authors: Unknown Abstract We model time series of VIX (monthly average) and monthly stock index returns. We use log-Heston model: logarithm of VIX is modeled as an autoregression of order 1. Our main insight is that normalizing monthly stock index returns (dividing them by VIX) makes them much closer to independent identically distributed Gaussian. The resulting model is mean-reverting, and the innovations are non-Gaussian. The combined stochastic volatility model fits well, and captures Pareto-like tails of real-world stock market returns. This works for small and large stock indices, for both price and total returns. ...

October 29, 2024 · 2 min · Research Team

A second order finite volume IMEX Runge-Kutta scheme for two dimensional PDEs in finance

A second order finite volume IMEX Runge-Kutta scheme for two dimensional PDEs in finance ArXiv ID: 2410.02925 “View on arXiv” Authors: Unknown Abstract In this article we present a novel and general methodology for building second order finite volume implicit-explicit (IMEX) numerical schemes for solving two dimensional financial parabolic PDEs with mixed derivatives. In particular, applications to basket and Heston models are presented. The obtained numerical schemes have excellent properties and are able to overcome the well-documented difficulties related with numerical approximations in the financial literature. The methods achieve true second order convergence with non-regular initial conditions. Besides, the IMEX time integrator allows to overcome the tiny time-step induced by the diffusive term in the explicit schemes, also providing very accurate and non-oscillatory approximations of the Greeks. Finally, in order to assess all the aforementioned good properties of the developed numerical schemes, we compute extremely accurate semi-analytic solutions using multi-dimensional Fourier cosine expansions. A novel technique to truncate the Fourier series for basket options is presented and it is efficiently implemented using multi-GPUs. ...

October 3, 2024 · 2 min · Research Team

Theoretical and Empirical Validation of Heston Model

Theoretical and Empirical Validation of Heston Model ArXiv ID: 2409.12453 “View on arXiv” Authors: Unknown Abstract This study focuses on the application of the Heston model to option pricing, employing both theoretical derivations and empirical validations. The Heston model, known for its ability to incorporate stochastic volatility, is derived and analyzed to evaluate its effectiveness in pricing options. For practical application, we utilize Monte Carlo simulations alongside market data from the Crude Oil WTI market to test the model’s accuracy. Machine learning based optimization methods are also applied for the estimation of the five Heston parameters. By calibrating the model with real-world data, we assess its robustness and relevance in current financial markets, aiming to bridge the gap between theoretical finance models and their practical implementations. ...

September 19, 2024 · 2 min · Research Team

High order approximations and simulation schemes for the log-Heston process

High order approximations and simulation schemes for the log-Heston process ArXiv ID: 2407.17151 “View on arXiv” Authors: Unknown Abstract We present weak approximations schemes of any order for the Heston model that are obtained by using the method developed by Alfonsi and Bally (2021). This method consists in combining approximation schemes calculated on different random grids to increase the order of convergence. We apply this method with either the Ninomiya-Victoir scheme (2008) or a second-order scheme that samples exactly the volatility component, and we show rigorously that we can achieve then any order of convergence. We give numerical illustrations on financial examples that validate the theoretical order of convergence. We also present promising numerical results for the multifactor/rough Heston model and hint at applications to other models, including the Bates model and the double Heston model. ...

July 24, 2024 · 2 min · Research Team

Calibrating the Heston model with deep differential networks

Calibrating the Heston model with deep differential networks ArXiv ID: 2407.15536 “View on arXiv” Authors: Unknown Abstract We propose a gradient-based deep learning framework to calibrate the Heston option pricing model (Heston, 1993). Our neural network, henceforth deep differential network (DDN), learns both the Heston pricing formula for plain-vanilla options and the partial derivatives with respect to the model parameters. The price sensitivities estimated by the DDN are not subject to the numerical issues that can be encountered in computing the gradient of the Heston pricing function. Thus, our network is an excellent pricing engine for fast gradient-based calibrations. Extensive tests on selected equity markets show that the DDN significantly outperforms non-differential feedforward neural networks in terms of calibration accuracy. In addition, it dramatically reduces the computational time with respect to global optimizers that do not use gradient information. ...

July 22, 2024 · 2 min · Research Team

Stochastic Approaches to Asset Price Analysis

Stochastic Approaches to Asset Price Analysis ArXiv ID: 2407.06745 “View on arXiv” Authors: Unknown Abstract In this project, we propose to explore the Kalman filter’s performance for estimating asset prices. We begin by introducing a stochastic mean-reverting processes, the Ornstein-Uhlenbeck (OU) model. After this we discuss the Kalman filter in detail, and its application with this model. After a demonstration of the Kalman filter on a simulated OU process and a discussion of maximum likelihood estimation (MLE) for estimating model parameters, we apply the Kalman filter with the OU process and trailing parameter estimation to real stock market data. We finish by proposing a simple day-trading algorithm using the Kalman filter with the OU process and backtest its performance using Apple’s stock price. We then move to the Heston model, a combination of Geometric Brownian Motion and the OU process. Maximum likelihood estimation is commonly used for Heston model parameter estimation, which results in very complex forms. Here we propose an alternative but easier way of parameter estimation, called the method of moments (MOM). After the derivation of these estimators, we again apply this method to real stock data to assess its performance. ...

July 9, 2024 · 2 min · Research Team