false

Experimental Analysis of Deep Hedging Using Artificial Market Simulations for Underlying Asset Simulators

Experimental Analysis of Deep Hedging Using Artificial Market Simulations for Underlying Asset Simulators ArXiv ID: 2404.09462 “View on arXiv” Authors: Unknown Abstract Derivative hedging and pricing are important and continuously studied topics in financial markets. Recently, deep hedging has been proposed as a promising approach that uses deep learning to approximate the optimal hedging strategy and can handle incomplete markets. However, deep hedging usually requires underlying asset simulations, and it is challenging to select the best model for such simulations. This study proposes a new approach using artificial market simulations for underlying asset simulations in deep hedging. Artificial market simulations can replicate the stylized facts of financial markets, and they seem to be a promising approach for deep hedging. We investigate the effectiveness of the proposed approach by comparing its results with those of the traditional approach, which uses mathematical finance models such as Brownian motion and Heston models for underlying asset simulations. The results show that the proposed approach can achieve almost the same level of performance as the traditional approach without mathematical finance models. Finally, we also reveal that the proposed approach has some limitations in terms of performance under certain conditions. ...

April 15, 2024 · 2 min · Research Team

Time series generation for option pricing on quantum computers using tensor network

Time series generation for option pricing on quantum computers using tensor network ArXiv ID: 2402.17148 “View on arXiv” Authors: Unknown Abstract Finance, especially option pricing, is a promising industrial field that might benefit from quantum computing. While quantum algorithms for option pricing have been proposed, it is desired to devise more efficient implementations of costly operations in the algorithms, one of which is preparing a quantum state that encodes a probability distribution of the underlying asset price. In particular, in pricing a path-dependent option, we need to generate a state encoding a joint distribution of the underlying asset price at multiple time points, which is more demanding. To address these issues, we propose a novel approach using Matrix Product State (MPS) as a generative model for time series generation. To validate our approach, taking the Heston model as a target, we conduct numerical experiments to generate time series in the model. Our findings demonstrate the capability of the MPS model to generate paths in the Heston model, highlighting its potential for path-dependent option pricing on quantum computers. ...

February 27, 2024 · 2 min · Research Team

Derivatives Sensitivities Computation under Heston Model on GPU

Derivatives Sensitivities Computation under Heston Model on GPU ArXiv ID: 2309.10477 “View on arXiv” Authors: Unknown Abstract This report investigates the computation of option Greeks for European and Asian options under the Heston stochastic volatility model on GPU. We first implemented the exact simulation method proposed by Broadie and Kaya and used it as a baseline for precision and speed. We then proposed a novel method for computing Greeks using the Milstein discretisation method on GPU. Our results show that the proposed method provides a speed-up up to 200x compared to the exact simulation implementation and that it can be used for both European and Asian options. However, the accuracy of the GPU method for estimating Rho is inferior to the CPU method. Overall, our study demonstrates the potential of GPU for computing derivatives sensitivies with numerical methods. ...

September 19, 2023 · 2 min · Research Team

Applying Deep Learning to Calibrate Stochastic Volatility Models

Applying Deep Learning to Calibrate Stochastic Volatility Models ArXiv ID: 2309.07843 “View on arXiv” Authors: Unknown Abstract Stochastic volatility models, where the volatility is a stochastic process, can capture most of the essential stylized facts of implied volatility surfaces and give more realistic dynamics of the volatility smile/skew. However, they come with the significant issue that they take too long to calibrate. Alternative calibration methods based on Deep Learning (DL) techniques have been recently used to build fast and accurate solutions to the calibration problem. Huge and Savine developed a Differential Machine Learning (DML) approach, where Machine Learning models are trained on samples of not only features and labels but also differentials of labels to features. The present work aims to apply the DML technique to price vanilla European options (i.e. the calibration instruments), more specifically, puts when the underlying asset follows a Heston model and then calibrate the model on the trained network. DML allows for fast training and accurate pricing. The trained neural network dramatically reduces Heston calibration’s computation time. In this work, we also introduce different regularisation techniques, and we apply them notably in the case of the DML. We compare their performance in reducing overfitting and improving the generalisation error. The DML performance is also compared to the classical DL (without differentiation) one in the case of Feed-Forward Neural Networks. We show that the DML outperforms the DL. The complete code for our experiments is provided in the GitHub repository: https://github.com/asridi/DML-Calibration-Heston-Model ...

September 14, 2023 · 3 min · Research Team

Fourier Neural Network Approximation of Transition Densities in Finance

Fourier Neural Network Approximation of Transition Densities in Finance ArXiv ID: 2309.03966 “View on arXiv” Authors: Unknown Abstract This paper introduces FourNet, a novel single-layer feed-forward neural network (FFNN) method designed to approximate transition densities for which closed-form expressions of their Fourier transforms, i.e. characteristic functions, are available. A unique feature of FourNet lies in its use of a Gaussian activation function, enabling exact Fourier and inverse Fourier transformations and drawing analogies with the Gaussian mixture model. We mathematically establish FourNet’s capacity to approximate transition densities in the $L_2$-sense arbitrarily well with finite number of neurons. The parameters of FourNet are learned by minimizing a loss function derived from the known characteristic function and the Fourier transform of the FFNN, complemented by a strategic sampling approach to enhance training. We derive practical bounds for the $L_2$ estimation error and the potential pointwise loss of nonnegativity in FourNet for $d$-dimensions ($d\ge 1$), highlighting its robustness and applicability in practical settings. FourNet’s accuracy and versatility are demonstrated through a wide range of dynamics common in quantitative finance, including Lévy processes and the Heston stochastic volatility models-including those augmented with the self-exciting Queue-Hawkes jump process. ...

September 7, 2023 · 2 min · Research Team

Machine learning for option pricing: an empirical investigation of network architectures

Machine learning for option pricing: an empirical investigation of network architectures ArXiv ID: 2307.07657 “View on arXiv” Authors: Unknown Abstract We consider the supervised learning problem of learning the price of an option or the implied volatility given appropriate input data (model parameters) and corresponding output data (option prices or implied volatilities). The majority of articles in this literature considers a (plain) feed forward neural network architecture in order to connect the neurons used for learning the function mapping inputs to outputs. In this article, motivated by methods in image classification and recent advances in machine learning methods for PDEs, we investigate empirically whether and how the choice of network architecture affects the accuracy and training time of a machine learning algorithm. We find that the generalized highway network architecture achieves the best performance, when considering the mean squared error and the training time as criteria, within the considered parameter budgets for the Black-Scholes and Heston option pricing problems. Considering the transformed implied volatility problem, a simplified DGM variant achieves the lowest error among the tested architectures. We also carry out a capacity-normalised comparison for completeness, where all architectures are evaluated with an equal number of parameters. Finally, for the implied volatility problem, we additionally include experiments using real market data. ...

July 14, 2023 · 2 min · Research Team