false

Monte-Carlo Option Pricing in Quantum Parallel

Monte-Carlo Option Pricing in Quantum Parallel ArXiv ID: 2505.09459 “View on arXiv” Authors: Robert Scriba, Yuying Li, Jingbo B Wang Abstract Financial derivative pricing is a significant challenge in finance, involving the valuation of instruments like options based on underlying assets. While some cases have simple solutions, many require complex classical computational methods like Monte Carlo simulations and numerical techniques. However, as derivative complexities increase, these methods face limitations in computational power. Cases involving Non-Vanilla Basket pricing, American Options, and derivative portfolio risk analysis need extensive computations in higher-dimensional spaces, posing challenges for classical computers. Quantum computing presents a promising avenue by harnessing quantum superposition and entanglement, allowing the handling of high-dimensional spaces effectively. In this paper, we introduce a self-contained and all-encompassing quantum algorithm that operates without reliance on oracles or presumptions. More specifically, we develop an effective stochastic method for simulating exponentially many potential asset paths in quantum parallel, leading to a highly accurate final distribution of stock prices. Furthermore, we demonstrate how this algorithm can be extended to price more complex options and analyze risk within derivative portfolios. ...

May 14, 2025 · 2 min · Research Team

Diffusion Factor Models: Generating High-Dimensional Returns with Factor Structure

Diffusion Factor Models: Generating High-Dimensional Returns with Factor Structure ArXiv ID: 2504.06566 “View on arXiv” Authors: Unknown Abstract Financial scenario simulation is essential for risk management and portfolio optimization, yet it remains challenging especially in high-dimensional and small data settings common in finance. We propose a diffusion factor model that integrates latent factor structure into generative diffusion processes, bridging econometrics with modern generative AI to address the challenges of the curse of dimensionality and data scarcity in financial simulation. By exploiting the low-dimensional factor structure inherent in asset returns, we decompose the score function–a key component in diffusion models–using time-varying orthogonal projections, and this decomposition is incorporated into the design of neural network architectures. We derive rigorous statistical guarantees, establishing nonasymptotic error bounds for both score estimation at O(d^{“5/2”} n^{"-2/(k+5)"}) and generated distribution at O(d^{“5/4”} n^{"-1/2(k+5)"}), primarily driven by the intrinsic factor dimension k rather than the number of assets d, surpassing the dimension-dependent limits in the classical nonparametric statistics literature and making the framework viable for markets with thousands of assets. Numerical studies confirm superior performance in latent subspace recovery under small data regimes. Empirical analysis demonstrates the economic significance of our framework in constructing mean-variance optimal portfolios and factor portfolios. This work presents the first theoretical integration of factor structure with diffusion models, offering a principled approach for high-dimensional financial simulation with limited data. Our code is available at https://github.com/xymmmm00/diffusion_factor_model. ...

April 9, 2025 · 2 min · Research Team