false

On lead-lag estimation of non-synchronously observed point processes

On lead-lag estimation of non-synchronously observed point processes ArXiv ID: 2601.01871 “View on arXiv” Authors: Takaaki Shiotani, Takaki Hayashi, Yuta Koike Abstract This paper introduces a new theoretical framework for analyzing lead-lag relationships between point processes, with a special focus on applications to high-frequency financial data. In particular, we are interested in lead-lag relationships between two sequences of order arrival timestamps. The seminal work of Dobrev and Schaumburg proposed model-free measures of cross-market trading activity based on cross-counts of timestamps. While their method is known to yield reliable results, it faces limitations because its original formulation inherently relies on discrete-time observations, an issue we address in this study. Specifically, we formulate the problem of estimating lead-lag relationships in two point processes as that of estimating the shape of the cross-pair correlation function (CPCF) of a bivariate stationary point process, a quantity well-studied in the neuroscience and spatial statistics literature. Within this framework, the prevailing lead-lag time is defined as the location of the CPCF’s sharpest peak. Under this interpretation, the peak location in Dobrev and Schaumburg’s cross-market activity measure can be viewed as an estimator of the lead-lag time in the aforementioned sense. We further propose an alternative lead-lag time estimator based on kernel density estimation and show that it possesses desirable theoretical properties and delivers superior numerical performance. Empirical evidence from high-frequency financial data demonstrates the effectiveness of our proposed method. ...

January 5, 2026 · 2 min · Research Team

Self and mutually exciting point process embedding flexible residuals and intensity with discretely Markovian dynamics

Self and mutually exciting point process embedding flexible residuals and intensity with discretely Markovian dynamics ArXiv ID: 2401.13890 “View on arXiv” Authors: Unknown Abstract This work introduces a self and mutually exciting point process that embeds flexible residuals and intensity with discretely Markovian dynamics. By allowing the integration of diverse residual distributions, this model serves as an extension of the Hawkes process, facilitating intensity modeling. This model’s nature enables a filtered historical simulation that more accurately incorporates the properties of the original time series. Furthermore, the process extends to multivariate models with manageable estimation and simulation implementations. We investigate the impact of a flexible residual distribution on the estimation of high-frequency financial data, comparing it with the Hawkes process. ...

January 25, 2024 · 2 min · Research Team