false

Predicting Price Movements in High-Frequency Financial Data with Spiking Neural Networks

Predicting Price Movements in High-Frequency Financial Data with Spiking Neural Networks ArXiv ID: 2512.05868 “View on arXiv” Authors: Brian Ezinwoke, Oliver Rhodes Abstract Modern high-frequency trading (HFT) environments are characterized by sudden price spikes that present both risk and opportunity, but conventional financial models often fail to capture the required fine temporal structure. Spiking Neural Networks (SNNs) offer a biologically inspired framework well-suited to these challenges due to their natural ability to process discrete events and preserve millisecond-scale timing. This work investigates the application of SNNs to high-frequency price-spike forecasting, enhancing performance via robust hyperparameter tuning with Bayesian Optimization (BO). This work converts high-frequency stock data into spike trains and evaluates three architectures: an established unsupervised STDP-trained SNN, a novel SNN with explicit inhibitory competition, and a supervised backpropagation network. BO was driven by a novel objective, Penalized Spike Accuracy (PSA), designed to ensure a network’s predicted price spike rate aligns with the empirical rate of price events. Simulated trading demonstrated that models optimized with PSA consistently outperformed their Spike Accuracy (SA)-tuned counterparts and baselines. Specifically, the extended SNN model with PSA achieved the highest cumulative return (76.8%) in simple backtesting, significantly surpassing the supervised alternative (42.54% return). These results validate the potential of spiking networks, when robustly tuned with task-specific objectives, for effective price spike forecasting in HFT. ...

December 5, 2025 · 2 min · Research Team

FlowHFT: Imitation Learning via Flow Matching Policy for Optimal High-Frequency Trading under Diverse Market Conditions

FlowHFT: Imitation Learning via Flow Matching Policy for Optimal High-Frequency Trading under Diverse Market Conditions ArXiv ID: 2505.05784 “View on arXiv” Authors: Yang Li, Zhi Chen, Steve Yang Abstract High-frequency trading (HFT) is an investing strategy that continuously monitors market states and places bid and ask orders at millisecond speeds. Traditional HFT approaches fit models with historical data and assume that future market states follow similar patterns. This limits the effectiveness of any single model to the specific conditions it was trained for. Additionally, these models achieve optimal solutions only under specific market conditions, such as assumptions about stock price’s stochastic process, stable order flow, and the absence of sudden volatility. Real-world markets, however, are dynamic, diverse, and frequently volatile. To address these challenges, we propose the FlowHFT, a novel imitation learning framework based on flow matching policy. FlowHFT simultaneously learns strategies from numerous expert models, each proficient in particular market scenarios. As a result, our framework can adaptively adjust investment decisions according to the prevailing market state. Furthermore, FlowHFT incorporates a grid-search fine-tuning mechanism. This allows it to refine strategies and achieve superior performance even in complex or extreme market scenarios where expert strategies may be suboptimal. We test FlowHFT in multiple market environments. We first show that flow matching policy is applicable in stochastic market environments, thus enabling FlowHFT to learn trading strategies under different market conditions. Notably, our single framework consistently achieves performance superior to the best expert for each market condition. ...

May 9, 2025 · 2 min · Research Team

Maximizing Battery Storage Profits via High-Frequency Intraday Trading

Maximizing Battery Storage Profits via High-Frequency Intraday Trading ArXiv ID: 2504.06932 “View on arXiv” Authors: Unknown Abstract Maximizing revenue for grid-scale battery energy storage systems in continuous intraday electricity markets requires strategies that are able to seize trading opportunities as soon as new information arrives. This paper introduces and evaluates an automated high-frequency trading strategy for battery energy storage systems trading on the intraday market for power while explicitly considering the dynamics of the limit order book, market rules, and technical parameters. The standard rolling intrinsic strategy is adapted for continuous intraday electricity markets and solved using a dynamic programming approximation that is two to three orders of magnitude faster than an exact mixed-integer linear programming solution. A detailed backtest over a full year of German order book data demonstrates that the proposed dynamic programming formulation does not reduce trading profits and enables the policy to react to every relevant order book update, enabling realistic rapid backtesting. Our results show the significant revenue potential of high-frequency trading: our policy earns 58% more than when re-optimizing only once every hour and 14% more than when re-optimizing once per minute, highlighting that profits critically depend on trading speed. Furthermore, we leverage the speed of our algorithm to train a parametric extension of the rolling intrinsic, increasing yearly revenue by 8.4% out of sample. ...

April 9, 2025 · 2 min · Research Team

Risk-Adjusted Performance of Random Forest Models in High-Frequency Trading

Risk-Adjusted Performance of Random Forest Models in High-Frequency Trading ArXiv ID: 2412.15448 “View on arXiv” Authors: Unknown Abstract Because of the theoretical challenges posed by the Efficient Market Hypothesis to technical analysis, the effectiveness of technical indicators in high-frequency trading remains inadequately explored, particularly at the minute-level frequency, where effects of the microstructure of the market dominate. This study evaluates the integration of traditional technical indicators with random forest regression models using minute-level SPY data, analyzing 13 distinct model configurations. Our empirical results reveal a stark contrast between in-sample and out-of-sample performance, with $R^2$ values deteriorating from 0.749–0.812 during training to negative values in testing. A feature importance analysis demonstrates that primary price-based features dominate the predictions made by the model, accounting for over 60% of the importance, while established technical indicators, such as RSI and Bollinger Bands, account for only 14%–15%. Although the indicator-enhanced models achieved superior risk-adjusted metrics, with Rachev ratios between 0.919 and 0.961, they consistently underperformed a simple buy-and-hold strategy, generating returns ranging from -2.4% to -3.9%. These findings challenge conventional assumptions about the usefulness of technical indicators in algorithmic trading, suggesting that in high-frequency contexts, they may be more relevant to risk management rather than to predicting returns. For practitioners and researchers, our findings indicate that successful high-frequency trading strategies should focus on adaptive feature selection and regime-specific modeling rather than relying on traditional technical indicators, as well as indicating the critical importance of robust out-of-sample testing in the development of a model. ...

December 19, 2024 · 2 min · Research Team

Research on Optimizing Real-Time Data Processing in High-Frequency Trading Algorithms using Machine Learning

Research on Optimizing Real-Time Data Processing in High-Frequency Trading Algorithms using Machine Learning ArXiv ID: 2412.01062 “View on arXiv” Authors: Unknown Abstract High-frequency trading (HFT) represents a pivotal and intensely competitive domain within the financial markets. The velocity and accuracy of data processing exert a direct influence on profitability, underscoring the significance of this field. The objective of this work is to optimise the real-time processing of data in high-frequency trading algorithms. The dynamic feature selection mechanism is responsible for monitoring and analysing market data in real time through clustering and feature weight analysis, with the objective of automatically selecting the most relevant features. This process employs an adaptive feature extraction method, which enables the system to respond and adjust its feature set in a timely manner when the data input changes, thus ensuring the efficient utilisation of data. The lightweight neural networks are designed in a modular fashion, comprising fast convolutional layers and pruning techniques that facilitate the expeditious completion of data processing and output prediction. In contrast to conventional deep learning models, the neural network architecture has been specifically designed to minimise the number of parameters and computational complexity, thereby markedly reducing the inference time. The experimental results demonstrate that the model is capable of maintaining consistent performance in the context of varying market conditions, thereby illustrating its advantages in terms of processing speed and revenue enhancement. ...

December 2, 2024 · 2 min · Research Team

Hybrid Vector Auto Regression and Neural Network Model for Order Flow Imbalance Prediction in High Frequency Trading

Hybrid Vector Auto Regression and Neural Network Model for Order Flow Imbalance Prediction in High Frequency Trading ArXiv ID: 2411.08382 “View on arXiv” Authors: Unknown Abstract In high frequency trading, accurate prediction of Order Flow Imbalance (OFI) is crucial for understanding market dynamics and maintaining liquidity. This paper introduces a hybrid predictive model that combines Vector Auto Regression (VAR) with a simple feedforward neural network (FNN) to forecast OFI and assess trading intensity. The VAR component captures linear dependencies, while residuals are fed into the FNN to model non-linear patterns, enabling a comprehensive approach to OFI prediction. Additionally, the model calculates the intensity on the Buy or Sell side, providing insights into which side holds greater trading pressure. These insights facilitate the development of trading strategies by identifying periods of high buy or sell intensity. Using both synthetic and real trading data from Binance, we demonstrate that the hybrid model offers significant improvements in predictive accuracy and enhances strategic decision-making based on OFI dynamics. Furthermore, we compare the hybrid models performance with standalone FNN and VAR models, showing that the hybrid approach achieves superior forecasting accuracy across both synthetic and real datasets, making it the most effective model for OFI prediction in high frequency trading. ...

November 13, 2024 · 2 min · Research Team

MacroHFT: Memory Augmented Context-aware Reinforcement Learning On High Frequency Trading

MacroHFT: Memory Augmented Context-aware Reinforcement Learning On High Frequency Trading ArXiv ID: 2406.14537 “View on arXiv” Authors: Unknown Abstract High-frequency trading (HFT) that executes algorithmic trading in short time scales, has recently occupied the majority of cryptocurrency market. Besides traditional quantitative trading methods, reinforcement learning (RL) has become another appealing approach for HFT due to its terrific ability of handling high-dimensional financial data and solving sophisticated sequential decision-making problems, \emph{“e.g.,”} hierarchical reinforcement learning (HRL) has shown its promising performance on second-level HFT by training a router to select only one sub-agent from the agent pool to execute the current transaction. However, existing RL methods for HFT still have some defects: 1) standard RL-based trading agents suffer from the overfitting issue, preventing them from making effective policy adjustments based on financial context; 2) due to the rapid changes in market conditions, investment decisions made by an individual agent are usually one-sided and highly biased, which might lead to significant loss in extreme markets. To tackle these problems, we propose a novel Memory Augmented Context-aware Reinforcement learning method On HFT, \emph{“a.k.a.”} MacroHFT, which consists of two training phases: 1) we first train multiple types of sub-agents with the market data decomposed according to various financial indicators, specifically market trend and volatility, where each agent owns a conditional adapter to adjust its trading policy according to market conditions; 2) then we train a hyper-agent to mix the decisions from these sub-agents and output a consistently profitable meta-policy to handle rapid market fluctuations, equipped with a memory mechanism to enhance the capability of decision-making. Extensive experiments on various cryptocurrency markets demonstrate that MacroHFT can achieve state-of-the-art performance on minute-level trading tasks. ...

June 20, 2024 · 2 min · Research Team

EarnHFT: Efficient Hierarchical Reinforcement Learning for High Frequency Trading

EarnHFT: Efficient Hierarchical Reinforcement Learning for High Frequency Trading ArXiv ID: 2309.12891 “View on arXiv” Authors: Unknown Abstract High-frequency trading (HFT) uses computer algorithms to make trading decisions in short time scales (e.g., second-level), which is widely used in the Cryptocurrency (Crypto) market (e.g., Bitcoin). Reinforcement learning (RL) in financial research has shown stellar performance on many quantitative trading tasks. However, most methods focus on low-frequency trading, e.g., day-level, which cannot be directly applied to HFT because of two challenges. First, RL for HFT involves dealing with extremely long trajectories (e.g., 2.4 million steps per month), which is hard to optimize and evaluate. Second, the dramatic price fluctuations and market trend changes of Crypto make existing algorithms fail to maintain satisfactory performance. To tackle these challenges, we propose an Efficient hieArchical Reinforcement learNing method for High Frequency Trading (EarnHFT), a novel three-stage hierarchical RL framework for HFT. In stage I, we compute a Q-teacher, i.e., the optimal action value based on dynamic programming, for enhancing the performance and training efficiency of second-level RL agents. In stage II, we construct a pool of diverse RL agents for different market trends, distinguished by return rates, where hundreds of RL agents are trained with different preferences of return rates and only a tiny fraction of them will be selected into the pool based on their profitability. In stage III, we train a minute-level router which dynamically picks a second-level agent from the pool to achieve stable performance across different markets. Through extensive experiments in various market trends on Crypto markets in a high-fidelity simulation trading environment, we demonstrate that EarnHFT significantly outperforms 6 state-of-art baselines in 6 popular financial criteria, exceeding the runner-up by 30% in profitability. ...

September 22, 2023 · 3 min · Research Team

Analysis of frequent trading effects of various machine learning models

Analysis of frequent trading effects of various machine learning models ArXiv ID: 2311.10719 “View on arXiv” Authors: Unknown Abstract In recent years, high-frequency trading has emerged as a crucial strategy in stock trading. This study aims to develop an advanced high-frequency trading algorithm and compare the performance of three different mathematical models: the combination of the cross-entropy loss function and the quasi-Newton algorithm, the FCNN model, and the vector machine. The proposed algorithm employs neural network predictions to generate trading signals and execute buy and sell operations based on specific conditions. By harnessing the power of neural networks, the algorithm enhances the accuracy and reliability of the trading strategy. To assess the effectiveness of the algorithm, the study evaluates the performance of the three mathematical models. The combination of the cross-entropy loss function and the quasi-Newton algorithm is a widely utilized logistic regression approach. The FCNN model, on the other hand, is a deep learning algorithm that can extract and classify features from stock data. Meanwhile, the vector machine is a supervised learning algorithm recognized for achieving improved classification results by mapping data into high-dimensional spaces. By comparing the performance of these three models, the study aims to determine the most effective approach for high-frequency trading. This research makes a valuable contribution by introducing a novel methodology for high-frequency trading, thereby providing investors with a more accurate and reliable stock trading strategy. ...

September 14, 2023 · 2 min · Research Team

Harnessing Deep Q-Learning for Enhanced Statistical Arbitrage in High-Frequency Trading: A Comprehensive Exploration

Harnessing Deep Q-Learning for Enhanced Statistical Arbitrage in High-Frequency Trading: A Comprehensive Exploration ArXiv ID: 2311.10718 “View on arXiv” Authors: Unknown Abstract The realm of High-Frequency Trading (HFT) is characterized by rapid decision-making processes that capitalize on fleeting market inefficiencies. As the financial markets become increasingly competitive, there is a pressing need for innovative strategies that can adapt and evolve with changing market dynamics. Enter Reinforcement Learning (RL), a branch of machine learning where agents learn by interacting with their environment, making it an intriguing candidate for HFT applications. This paper dives deep into the integration of RL in statistical arbitrage strategies tailored for HFT scenarios. By leveraging the adaptive learning capabilities of RL, we explore its potential to unearth patterns and devise trading strategies that traditional methods might overlook. We delve into the intricate exploration-exploitation trade-offs inherent in RL and how they manifest in the volatile world of HFT. Furthermore, we confront the challenges of applying RL in non-stationary environments, typical of financial markets, and investigate methodologies to mitigate associated risks. Through extensive simulations and backtests, our research reveals that RL not only enhances the adaptability of trading strategies but also shows promise in improving profitability metrics and risk-adjusted returns. This paper, therefore, positions RL as a pivotal tool for the next generation of HFT-based statistical arbitrage, offering insights for both researchers and practitioners in the field. ...

September 13, 2023 · 2 min · Research Team