false

A new architecture of high-order deep neural networks that learn martingales

A new architecture of high-order deep neural networks that learn martingales ArXiv ID: 2505.03789 “View on arXiv” Authors: Syoiti Ninomiya, Yuming Ma Abstract A new deep-learning neural network architecture based on high-order weak approximation algorithms for stochastic differential equations (SDEs) is proposed. The architecture enables the efficient learning of martingales by deep learning models. The behaviour of deep neural networks based on this architecture, when applied to the problem of pricing financial derivatives, is also examined. The core of this new architecture lies in the high-order weak approximation algorithms of the explicit Runge–Kutta type, wherein the approximation is realised solely through iterative compositions and linear combinations of vector fields of the target SDEs. ...

May 1, 2025 · 2 min · Research Team

Approximation and regularity results for the Heston model and related processes

Approximation and regularity results for the Heston model and related processes ArXiv ID: 2504.21658 “View on arXiv” Authors: Edoardo Lombardo Abstract This Ph.D. thesis explores approximations and regularity for the Heston stochastic volatility model through three interconnected works. The first work focuses on developing high-order weak approximations for the Cox-Ingersoll-Ross (CIR) process, essential for financial modelling but challenging due to the square root diffusion term preventing standard methods. By employing the random grid technique (Alfonsi & Bally, 2021) built upon Alfonsi’s (2010) second-order scheme, the work proves that weak approximations of any order can be achieved for smooth test functions. This holds under a condition that is less restrictive than the famous Feller’s one. Numerical results confirm convergence for both CIR and Heston models and show significant computational time improvements. The second work extends the random grid technique to the log-Heston process. Two second-order schemes are introduced (one using exact volatility simulation, another using Ninomiya-Victoir splitting under a the same restriction used above). Convergence to any desired order is rigorously proven. Numerical experiments validate the schemes’ effectiveness for pricing European and Asian options and suggest potential applicability to multifactor/rough Heston models. The third work investigates the partial differential equation (PDE) associated with the log-Heston model. It extends classical solution results and establishes the existence and uniqueness of viscosity solutions without relying on the Feller condition. Uniqueness is proven even for certain discontinuous initial data, relevant for pricing instruments like digital options. Furthermore, the convergence of a hybrid numerical scheme to the viscosity solution is shown under relaxed regularity (continuity) for the initial data. An appendix includes supplementary results for the CIR process. ...

April 30, 2025 · 3 min · Research Team