false

Utilizing RNN for Real-time Cryptocurrency Price Prediction and Trading Strategy Optimization

Utilizing RNN for Real-time Cryptocurrency Price Prediction and Trading Strategy Optimization ArXiv ID: 2411.05829 “View on arXiv” Authors: Unknown Abstract This study explores the use of Recurrent Neural Networks (RNN) for real-time cryptocurrency price prediction and optimized trading strategies. Given the high volatility of the cryptocurrency market, traditional forecasting models often fall short. By leveraging RNNs’ capability to capture long-term patterns in time-series data, this research aims to improve accuracy in price prediction and develop effective trading strategies. The project follows a structured approach involving data collection, preprocessing, and model refinement, followed by rigorous backtesting for profitability and risk assessment. This work contributes to both the academic and practical fields by providing a robust predictive model and optimized trading strategies that address the challenges of cryptocurrency trading. ...

November 5, 2024 · 2 min · Research Team

Sizing Strategies for Algorithmic Trading in Volatile Markets: A Study of Backtesting and Risk Mitigation Analysis

Sizing Strategies for Algorithmic Trading in Volatile Markets: A Study of Backtesting and Risk Mitigation Analysis ArXiv ID: 2309.09094 “View on arXiv” Authors: Unknown Abstract Backtest is a way of financial risk evaluation which helps to analyze how our trading algorithm would work in markets with past time frame. The high volatility situation has always been a critical situation which creates challenges for algorithmic traders. The paper investigates different models of sizing in financial trading and backtest to high volatility situations to understand how sizing models can lower the models of VaR during crisis events. Hence it tries to show that how crisis events with high volatility can be controlled using short and long positional size. The paper also investigates stocks with AR, ARIMA, LSTM, GARCH with ETF data. ...

September 16, 2023 · 2 min · Research Team