false

Stochastic Volatility Modelling with LSTM Networks: A Hybrid Approach for S&P 500 Index Volatility Forecasting

Stochastic Volatility Modelling with LSTM Networks: A Hybrid Approach for S&P 500 Index Volatility Forecasting ArXiv ID: 2512.12250 “View on arXiv” Authors: Anna Perekhodko, Robert Ślepaczuk Abstract Accurate volatility forecasting is essential in banking, investment, and risk management, because expectations about future market movements directly influence current decisions. This study proposes a hybrid modelling framework that integrates a Stochastic Volatility model with a Long Short Term Memory neural network. The SV model improves statistical precision and captures latent volatility dynamics, especially in response to unforeseen events, while the LSTM network enhances the model’s ability to detect complex nonlinear patterns in financial time series. The forecasting is conducted using daily data from the S and P 500 index, covering the period from January 1 1998 to December 31 2024. A rolling window approach is employed to train the model and generate one step ahead volatility forecasts. The performance of the hybrid SV-LSTM model is evaluated through both statistical testing and investment simulations. The results show that the hybrid approach outperforms both the standalone SV and LSTM models and contributes to the development of volatility modelling techniques, providing a foundation for improving risk assessment and strategic investment planning in the context of the S and P 500. ...

December 13, 2025 · 2 min · Research Team

Hybrid Models for Financial Forecasting: Combining Econometric, Machine Learning, and Deep Learning Models

Hybrid Models for Financial Forecasting: Combining Econometric, Machine Learning, and Deep Learning Models ArXiv ID: 2505.19617 “View on arXiv” Authors: Dominik Stempień, Robert Ślepaczuk Abstract This research systematically develops and evaluates various hybrid modeling approaches by combining traditional econometric models (ARIMA and ARFIMA models) with machine learning and deep learning techniques (SVM, XGBoost, and LSTM models) to forecast financial time series. The empirical analysis is based on two distinct financial assets: the S&P 500 index and Bitcoin. By incorporating over two decades of daily data for the S&P 500 and almost ten years of Bitcoin data, the study provides a comprehensive evaluation of forecasting methodologies across different market conditions and periods of financial distress. Models’ training and hyperparameter tuning procedure is performed using a novel three-fold dynamic cross-validation method. The applicability of applied models is evaluated using both forecast error metrics and trading performance indicators. The obtained findings indicate that the proper construction process of hybrid models plays a crucial role in developing profitable trading strategies, outperforming their individual components and the benchmark Buy&Hold strategy. The most effective hybrid model architecture was achieved by combining the econometric ARIMA model with either SVM or LSTM, under the assumption of a non-additive relationship between the linear and nonlinear components. ...

May 26, 2025 · 2 min · Research Team