false

The AI Black-Scholes: Finance-Informed Neural Network

The AI Black-Scholes: Finance-Informed Neural Network ArXiv ID: 2412.12213 “View on arXiv” Authors: Unknown Abstract In the realm of option pricing, existing models are typically classified into principle-driven methods, such as solving partial differential equations (PDEs) that pricing function satisfies, and data-driven approaches, such as machine learning (ML) techniques that parameterize the pricing function directly. While principle-driven models offer a rigorous theoretical framework, they often rely on unrealistic assumptions, such as asset processes adhering to fixed stochastic differential equations (SDEs). Moreover, they can become computationally intensive, particularly in high-dimensional settings when analytical solutions are not available and thus numerical solutions are needed. In contrast, data-driven models excel in capturing market data trends, but they often lack alignment with core financial principles, raising concerns about interpretability and predictive accuracy, especially when dealing with limited or biased datasets. This work proposes a hybrid approach to address these limitations by integrating the strengths of both principled and data-driven methodologies. Our framework combines the theoretical rigor and interpretability of PDE-based models with the adaptability of machine learning techniques, yielding a more versatile methodology for pricing a broad spectrum of options. We validate our approach across different volatility modeling approaches-both with constant volatility (Black-Scholes) and stochastic volatility (Heston), demonstrating that our proposed framework, Finance-Informed Neural Network (FINN), not only enhances predictive accuracy but also maintains adherence to core financial principles. FINN presents a promising tool for practitioners, offering robust performance across a variety of market conditions. ...

December 15, 2024 · 2 min · Research Team

The Hybrid Forecast of S&P 500 Volatility ensembled from VIX, GARCH and LSTM models

The Hybrid Forecast of S&P 500 Volatility ensembled from VIX, GARCH and LSTM models ArXiv ID: 2407.16780 “View on arXiv” Authors: Unknown Abstract Predicting the S&P 500 index volatility is crucial for investors and financial analysts as it helps assess market risk and make informed investment decisions. Volatility represents the level of uncertainty or risk related to the size of changes in a security’s value, making it an essential indicator for financial planning. This study explores four methods to improve the accuracy of volatility forecasts for the S&P 500: the established GARCH model, known for capturing historical volatility patterns; an LSTM network that utilizes past volatility and log returns; a hybrid LSTM-GARCH model that combines the strengths of both approaches; and an advanced version of the hybrid model that also factors in the VIX index to gauge market sentiment. This analysis is based on a daily dataset that includes S&P 500 and VIX index data, covering the period from January 3, 2000, to December 21, 2023. Through rigorous testing and comparison, we found that machine learning approaches, particularly the hybrid LSTM models, significantly outperform the traditional GARCH model. Including the VIX index in the hybrid model further enhances its forecasting ability by incorporating real-time market sentiment. The results of this study offer valuable insights for achieving more accurate volatility predictions, enabling better risk management and strategic investment decisions in the volatile environment of the S&P 500. ...

July 23, 2024 · 2 min · Research Team

LSTM-ARIMA as a Hybrid Approach in Algorithmic Investment Strategies

LSTM-ARIMA as a Hybrid Approach in Algorithmic Investment Strategies ArXiv ID: 2406.18206 “View on arXiv” Authors: Unknown Abstract This study focuses on building an algorithmic investment strategy employing a hybrid approach that combines LSTM and ARIMA models referred to as LSTM-ARIMA. This unique algorithm uses LSTM to produce final predictions but boosts the results of this RNN by adding the residuals obtained from ARIMA predictions among other inputs. The algorithm is tested across three equity indices (S&P 500, FTSE 100, and CAC 40) using daily frequency data from January 2000 to August 2023. The testing architecture is based on the walk-forward procedure for the hyperparameter tunning phase that uses Random Search and backtesting the algorithms. The selection of the optimal model is determined based on adequately selected performance metrics focused on risk-adjusted return measures. We considered two strategies for each algorithm: Long-Only and Long-Short to present the situation of two various groups of investors with different investment policy restrictions. For each strategy and equity index, we compute the performance metrics and visualize the equity curve to identify the best strategy with the highest modified information ratio. The findings conclude that the LSTM-ARIMA algorithm outperforms all the other algorithms across all the equity indices which confirms the strong potential behind hybrid ML-TS (machine learning - time series) models in searching for the optimal algorithmic investment strategies. ...

June 26, 2024 · 2 min · Research Team

ChatGPT-based Investment Portfolio Selection

ChatGPT-based Investment Portfolio Selection ArXiv ID: 2308.06260 “View on arXiv” Authors: Unknown Abstract In this paper, we explore potential uses of generative AI models, such as ChatGPT, for investment portfolio selection. Trusting investment advice from Generative Pre-Trained Transformer (GPT) models is a challenge due to model “hallucinations”, necessitating careful verification and validation of the output. Therefore, we take an alternative approach. We use ChatGPT to obtain a universe of stocks from S&P500 market index that are potentially attractive for investing. Subsequently, we compared various portfolio optimization strategies that utilized this AI-generated trading universe, evaluating those against quantitative portfolio optimization models as well as comparing to some of the popular investment funds. Our findings indicate that ChatGPT is effective in stock selection but may not perform as well in assigning optimal weights to stocks within the portfolio. But when stocks selection by ChatGPT is combined with established portfolio optimization models, we achieve even better results. By blending strengths of AI-generated stock selection with advanced quantitative optimization techniques, we observed the potential for more robust and favorable investment outcomes, suggesting a hybrid approach for more effective and reliable investment decision-making in the future. ...

August 11, 2023 · 2 min · Research Team