From News to Returns: A Granger-Causal Hypergraph Transformer on the Sphere
From News to Returns: A Granger-Causal Hypergraph Transformer on the Sphere ArXiv ID: 2510.04357 “View on arXiv” Authors: Anoushka Harit, Zhongtian Sun, Jongmin Yu Abstract We propose the Causal Sphere Hypergraph Transformer (CSHT), a novel architecture for interpretable financial time-series forecasting that unifies \emph{“Granger-causal hypergraph structure”}, \emph{“Riemannian geometry”}, and \emph{“causally masked Transformer attention”}. CSHT models the directional influence of financial news and sentiment on asset returns by extracting multivariate Granger-causal dependencies, which are encoded as directional hyperedges on the surface of a hypersphere. Attention is constrained via angular masks that preserve both temporal directionality and geometric consistency. Evaluated on S&P 500 data from 2018 to 2023, including the 2020 COVID-19 shock, CSHT consistently outperforms baselines across return prediction, regime classification, and top-asset ranking tasks. By enforcing predictive causal structure and embedding variables in a Riemannian manifold, CSHT delivers both \emph{“robust generalisation across market regimes”} and \emph{“transparent attribution pathways”} from macroeconomic events to stock-level responses. These results suggest that CSHT is a principled and practical solution for trustworthy financial forecasting under uncertainty. ...