Auto-Regressive Control of Execution Costs
Auto-Regressive Control of Execution Costs ArXiv ID: 2412.10947 “View on arXiv” Authors: Unknown Abstract Bertsimas and Lo’s seminal work established a foundational framework for addressing the implementation shortfall dilemma faced by large institutional investors. Their models emphasized the critical role of accurate knowledge of market microstructure and price/information dynamics in optimizing trades to minimize execution costs. However, this paper recognizes that perfect initial knowledge may not be a realistic assumption for new investors entering the market. Therefore, this study aims to bridge this gap by proposing an approach that iteratively derives OLS estimates of the market parameters from period to period. This methodology enables uninformed investors to engage in the market dynamically, adjusting their strategies over time based on evolving estimates, thus offering a practical solution for navigating the complexities of execution cost optimization without perfect initial knowledge. ...