false

Fast reliable pricing and calibration of the rough Heston model

Fast reliable pricing and calibration of the rough Heston model ArXiv ID: 2508.15080 “View on arXiv” Authors: Svetlana Boyarchenko, Marco de Innocentis, Sergei Levendorskiĭ Abstract The paper is an extended and modified version of the preprint S.Boyarchenko and S.Levendorskiĭ Correct implied volatility shapes and reliable pricing in the rough Heston model". We combine a modification of the Adams method with the SINH-acceleration method S.Boyarchenko and S.Levendorskii (IJTAF 2019, v.22) of Fourier inversion (iFT) to price vanilla options under the rough Heston model. For moderate or long maturities and strikes near spot, thousands of prices are computed in several milliseconds (ms) in Matlab on a Mac with moderate specs, with relative errors $\lesssim 10^{"-4"}$. Even for options close to expiry and far-OTM, the pricing takes a few tens or hundreds of ms. We show that, for the calibrated parameters in El Euch and Rosenbaum (Math.Finance 2019, v.29), the model implied vol surface is much flatter and fits the market data poorly; thus the calibration in op.cit. is a case of ghost calibration’’ (M.Boyarchenko and S.Levendorskiĭ, Quant. Finance 2015, v.15): numerical error and model specification error offset each other, creating an apparently good fit that vanishes when a more accurate pricer is used. We explain how such errors arise in popular iFT implementations that use fixed numerical parameters, yielding spurious smiles/skews, and provide numerical evidence that SINH acceleration is faster and more accurate than competing methods. Robust error control is ensured by a general Conformal Bootstrap principle that we formulate; the principle is applicable to many Fourier-pricing methods. We outline how this principle and our method enable accurate calibration procedures that are hundreds of times faster than approaches commonly used in the industry. Disclaimer: The views expressed herein are those of the authors only. No other representation should be attributed. ...

August 20, 2025 · 3 min · Research Team

Modeling Loss-Versus-Rebalancing in Automated Market Makers via Continuous-Installment Options

Modeling Loss-Versus-Rebalancing in Automated Market Makers via Continuous-Installment Options ArXiv ID: 2508.02971 “View on arXiv” Authors: Srisht Fateh Singh, Reina Ke Xin Li, Samuel Gaskin, Yuntao Wu, Jeffrey Klinck, Panagiotis Michalopoulos, Zissis Poulos, Andreas Veneris Abstract This paper mathematically models a constant-function automated market maker (CFAMM) position as a portfolio of exotic options, known as perpetual American continuous-installment (CI) options. This model replicates an AMM position’s delta at each point in time over an infinite time horizon, thus taking into account the perpetual nature and optionality to withdraw of liquidity provision. This framework yields two key theoretical results: (a) It proves that the AMM’s adverse-selection cost, loss-versus-rebalancing (LVR), is analytically identical to the continuous funding fees (the time value decay or theta) earned by the at-the-money CI option embedded in the replicating portfolio. (b) A special case of this model derives an AMM liquidity position’s delta profile and boundaries that suffer approximately constant LVR, up to a bounded residual error, over an arbitrarily long forward window. Finally, the paper describes how the constant volatility parameter required by the perpetual option can be calibrated from the term structure of implied volatilities and estimates the errors for both implied volatility calibration and LVR residual error. Thus, this work provides a practical framework enabling liquidity providers to choose an AMM liquidity profile and price boundaries for an arbitrarily long, forward-looking time window where they can expect an approximately constant, price-independent LVR. The results establish a rigorous option-theoretic interpretation of AMMs and their LVR, and provide actionable guidance for liquidity providers in estimating future adverse-selection costs and optimizing position parameters. ...

August 5, 2025 · 3 min · Research Team

Analytic estimation of parameters of stochastic volatility diffusion models with exponential-affine characteristic function for currency option pricing

Analytic estimation of parameters of stochastic volatility diffusion models with exponential-affine characteristic function for currency option pricing ArXiv ID: 2507.11868 “View on arXiv” Authors: Mikołaj Łabędzki Abstract This dissertation develops and justifies a novel method for deriving approximate formulas to estimate two parameters in stochastic volatility diffusion models with exponentially-affine characteristic functions and single- or two-factor variance. These formulas aim to improve the accuracy of option pricing and enhance the calibration process by providing reliable initial values for local minimization algorithms. The parameters relate to the volatility of the stochastic factor in instantaneous variance dynamics and the correlation between stochastic factors and asset price dynamics. The study comprises five chapters. Chapter one outlines the currency option market, pricing methods, and the general structure of stochastic volatility models. Chapter two derives the replication strategy dynamics and introduces a new two-factor volatility model: the OUOU model. Chapter three analyzes the distribution and surface dynamics of implied volatilities using principal component and common factor analysis. Chapter four discusses calibration methods for stochastic volatility models, particularly the Heston model, and presents the new Implied Central Moments method to estimate parameters in the Heston and Schöbel-Zhu models. Extensions to two-factor models, Bates and OUOU, are also explored. Chapter five evaluates the performance of the proposed formulas on the EURUSD options market, demonstrating the superior accuracy of the new method. The dissertation successfully meets its research objectives, expanding tools for derivative pricing and risk assessment. Key contributions include faster and more precise parameter estimation formulas and the introduction of the OUOU model - an extension of the Schöbel-Zhu model with a semi-analytical valuation formula for European options, previously unexamined in the literature. ...

July 16, 2025 · 2 min · Research Team

Joint deep calibration of the 4-factor PDV model

Joint deep calibration of the 4-factor PDV model ArXiv ID: 2507.09412 “View on arXiv” Authors: Fabio Baschetti, Giacomo Bormetti, Pietro Rossi Abstract Joint calibration to SPX and VIX market data is a delicate task that requires sophisticated modeling and incurs significant computational costs. The latter is especially true when pricing of volatility derivatives hinges on nested Monte Carlo simulation. One such example is the 4-factor Markov Path-Dependent Volatility (PDV) model of Guyon and Lekeufack (2023). Nonetheless, its realism has earned it considerable attention in recent years. Gazzani and Guyon (2025) marked a relevant contribution by learning the VIX as a random variable, i.e., a measurable function of the model parameters and the Markovian factors. A neural network replaces the inner simulation and makes the joint calibration problem accessible. However, the minimization loop remains slow due to expensive outer simulation. The present paper overcomes this limitation by learning SPX implied volatilities, VIX futures, and VIX call option prices. The pricing functions reduce to simple matrix-vector products that can be evaluated on the fly, shrinking calibration times to just a few seconds. ...

July 12, 2025 · 2 min · Research Team

Integrating the implied regularity into implied volatility models: A study on free arbitrage model

Integrating the implied regularity into implied volatility models: A study on free arbitrage model ArXiv ID: 2502.07518 “View on arXiv” Authors: Unknown Abstract Implied volatility IV is a key metric in financial markets, reflecting market expectations of future price fluctuations. Research has explored IV’s relationship with moneyness, focusing on its connection to the implied Hurst exponent H. Our study reveals that H approaches 1/2 when moneyness equals 1, marking a critical point in market efficiency expectations. We developed an IV model that integrates H to capture these dynamics more effectively. This model considers the interaction between H and the underlying-to-strike price ratio S/K, crucial for capturing IV variations based on moneyness. Using Optuna optimization across multiple indexes, the model outperformed SABR and fSABR in accuracy. This approach provides a more detailed representation of market expectations and IV-H dynamics, improving options pricing and volatility forecasting while enhancing theoretical and pratcical financial analysis. ...

February 11, 2025 · 2 min · Research Team

Deep learning interpretability for rough volatility

Deep learning interpretability for rough volatility ArXiv ID: 2411.19317 “View on arXiv” Authors: Unknown Abstract Deep learning methods have become a widespread toolbox for pricing and calibration of financial models. While they often provide new directions and research results, their `black box’ nature also results in a lack of interpretability. We provide a detailed interpretability analysis of these methods in the context of rough volatility - a new class of volatility models for Equity and FX markets. Our work sheds light on the neural network learned inverse map between the rough volatility model parameters, seen as mathematical model inputs and network outputs, and the resulting implied volatility across strikes and maturities, seen as mathematical model outputs and network inputs. This contributes to building a solid framework for a safer use of neural networks in this context and in quantitative finance more generally. ...

November 28, 2024 · 2 min · Research Team

Filling in Missing FX Implied Volatilities with Uncertainties: Improving VAE-Based Volatility Imputation

Filling in Missing FX Implied Volatilities with Uncertainties: Improving VAE-Based Volatility Imputation ArXiv ID: 2411.05998 “View on arXiv” Authors: Unknown Abstract Missing data is a common problem in finance and often requires methods to fill in the gaps, or in other words, imputation. In this work, we focused on the imputation of missing implied volatilities for FX options. Prior work has used variational autoencoders (VAEs), a neural network-based approach, to solve this problem; however, using stronger classical baselines such as Heston with jumps can significantly outperform their results. We show that simple modifications to the architecture of the VAE lead to significant imputation performance improvements (e.g., in low missingness regimes, nearly cutting the error by half), removing the necessity of using $β$-VAEs. Further, we modify the VAE imputation algorithm in order to better handle the uncertainty in data, as well as to obtain accurate uncertainty estimates around imputed values. ...

November 8, 2024 · 2 min · Research Team

Evaluating Credit VIX (CDS IV) Prediction Methods with Incremental Batch Learning

Evaluating Credit VIX (CDS IV) Prediction Methods with Incremental Batch Learning ArXiv ID: 2408.15404 “View on arXiv” Authors: Unknown Abstract This paper presents the experimental process and results of SVM, Gradient Boosting, and an Attention-GRU Hybrid model in predicting the Implied Volatility of rolled-over five-year spread contracts of credit default swaps (CDS) on European corporate debt during the quarter following mid-May ‘24, as represented by the iTraxx/Cboe Europe Main 1-Month Volatility Index (BP Volatility). The analysis employs a feature matrix inspired by Merton’s determinants of default probability. Our comparative assessment aims to identify strengths in SOTA and classical machine learning methods for financial risk prediction ...

August 27, 2024 · 2 min · Research Team

High-Frequency Options Trading | With Portfolio Optimization

High-Frequency Options Trading | With Portfolio Optimization ArXiv ID: 2408.08866 “View on arXiv” Authors: Unknown Abstract This paper explores the effectiveness of high-frequency options trading strategies enhanced by advanced portfolio optimization techniques, investigating their ability to consistently generate positive returns compared to traditional long or short positions on options. Utilizing SPY options data recorded in five-minute intervals over a one-month period, we calculate key metrics such as Option Greeks and implied volatility, applying the Binomial Tree model for American options pricing and the Newton-Raphson algorithm for implied volatility calculation. Investment universes are constructed based on criteria like implied volatility and Greeks, followed by the application of various portfolio optimization models, including Standard Mean-Variance and Robust Methods. Our research finds that while basic long-short strategies centered on implied volatility and Greeks generally underperform, more sophisticated strategies incorporating advanced Greeks, such as Vega and Rho, along with dynamic portfolio optimization, show potential in effectively navigating the complexities of the options market. The study highlights the importance of adaptability and responsiveness in dynamic portfolio strategies within the high-frequency trading environment, particularly under volatile market conditions. Future research could refine strategy parameters and explore less frequently traded options, offering new insights into high-frequency options trading and portfolio management. ...

August 16, 2024 · 2 min · Research Team

Operator Deep Smoothing for Implied Volatility

Operator Deep Smoothing for Implied Volatility ArXiv ID: 2406.11520 “View on arXiv” Authors: Unknown Abstract We devise a novel method for nowcasting implied volatility based on neural operators. Better known as implied volatility smoothing in the financial industry, nowcasting of implied volatility means constructing a smooth surface that is consistent with the prices presently observed on a given option market. Option price data arises highly dynamically in ever-changing spatial configurations, which poses a major limitation to foundational machine learning approaches using classical neural networks. While large models in language and image processing deliver breakthrough results on vast corpora of raw data, in financial engineering the generalization from big historical datasets has been hindered by the need for considerable data pre-processing. In particular, implied volatility smoothing has remained an instance-by-instance, hands-on process both for neural network-based and traditional parametric strategies. Our general operator deep smoothing approach, instead, directly maps observed data to smoothed surfaces. We adapt the graph neural operator architecture to do so with high accuracy on ten years of raw intraday S&P 500 options data, using a single model instance. The trained operator adheres to critical no-arbitrage constraints and is robust with respect to subsampling of inputs (occurring in practice in the context of outlier removal). We provide extensive historical benchmarks and showcase the generalization capability of our approach in a comparison with classical neural networks and SVI, an industry standard parametrization for implied volatility. The operator deep smoothing approach thus opens up the use of neural networks on large historical datasets in financial engineering. ...

June 17, 2024 · 2 min · Research Team