false

SABR-Informed Multitask Gaussian Process: A Synthetic-to-Real Framework for Implied Volatility Surface Construction

SABR-Informed Multitask Gaussian Process: A Synthetic-to-Real Framework for Implied Volatility Surface Construction ArXiv ID: 2506.22888 “View on arXiv” Authors: Jirong Zhuang, Xuan Wu Abstract Constructing the Implied Volatility Surface (IVS) is a challenging task in quantitative finance due to the complexity of real markets and the sparsity of market data. Structural models like Stochastic Alpha Beta Rho (SABR) model offer interpretability and theoretical consistency but lack flexibility, while purely data-driven methods such as Gaussian Process regression can struggle with sparse data. We introduce SABR-Informed Multi-Task Gaussian Process (SABR-MTGP), treating IVS construction as a multi-task learning problem. Our method uses a dense synthetic dataset from a calibrated SABR model as a source task to inform the construction based on sparse market data (the target task). The MTGP framework captures task correlation and transfers structural information adaptively, improving predictions particularly in data-scarce regions. Experiments using Heston-generated ground truth data under various market conditions show that SABR-MTGP outperforms both standard Gaussian process regression and SABR across different maturities. Furthermore, an application to real SPX market data demonstrates the method’s practical applicability and its ability to produce stable and realistic surfaces. This confirms our method balances structural guidance from SABR with the flexibility needed for market data. ...

June 28, 2025 · 2 min · Research Team

Whack-a-mole Online Learning: Physics-Informed Neural Network for Intraday Implied Volatility Surface

Whack-a-mole Online Learning: Physics-Informed Neural Network for Intraday Implied Volatility Surface ArXiv ID: 2411.02375 “View on arXiv” Authors: Unknown Abstract Calibrating the time-dependent Implied Volatility Surface (IVS) using sparse market data is an essential challenge in computational finance, particularly for real-time applications. This task requires not only fitting market data but also satisfying a specified partial differential equation (PDE) and no-arbitrage conditions modelled by differential inequalities. This paper proposes a novel Physics-Informed Neural Networks (PINNs) approach called Whack-a-mole Online Learning (WamOL) to address this multi-objective optimisation problem. WamOL integrates self-adaptive and auto-balancing processes for each loss term, efficiently reweighting objective functions to ensure smooth surface fitting while adhering to PDE and no-arbitrage constraints and updating for intraday predictions. In our experiments, WamOL demonstrates superior performance in calibrating intraday IVS from uneven and sparse market data, effectively capturing the dynamic evolution of option prices and associated risk profiles. This approach offers an efficient solution for intraday IVS calibration, extending PINNs applications and providing a method for real-time financial modelling. ...

November 4, 2024 · 2 min · Research Team