false

An Impulse Control Approach to Market Making in a Hawkes LOB Market

An Impulse Control Approach to Market Making in a Hawkes LOB Market ArXiv ID: 2510.26438 “View on arXiv” Authors: Konark Jain, Nick Firoozye, Jonathan Kochems, Philip Treleaven Abstract We study the optimal Market Making problem in a Limit Order Book (LOB) market simulated using a high-fidelity, mutually exciting Hawkes process. Departing from traditional Brownian-driven mid-price models, our setup captures key microstructural properties such as queue dynamics, inter-arrival clustering, and endogenous price impact. Recognizing the realistic constraint that market makers cannot update strategies at every LOB event, we formulate the control problem within an impulse control framework, where interventions occur discretely via limit, cancel, or market orders. This leads to a high-dimensional, non-local Hamilton-Jacobi-Bellman Quasi-Variational Inequality (HJB-QVI), whose solution is analytically intractable and computationally expensive due to the curse of dimensionality. To address this, we propose a novel Reinforcement Learning (RL) approximation inspired by auxiliary control formulations. Using a two-network PPO-based architecture with self-imitation learning, we demonstrate strong empirical performance with limited training, achieving Sharpe ratios above 30 in a realistic simulated LOB. In addition to that, we solve the HJB-QVI using a deep learning method inspired by Sirignano and Spiliopoulos 2018 and compare the performance with the RL agent. Our findings highlight the promise of combining impulse control theory with modern deep RL to tackle optimal execution problems in jump-driven microstructural markets. ...

October 30, 2025 · 2 min · Research Team

Optimal Execution under Incomplete Information

Optimal Execution under Incomplete Information ArXiv ID: 2411.04616 “View on arXiv” Authors: Unknown Abstract We study optimal liquidation strategies under partial information for a single asset within a finite time horizon. We propose a model tailored for high-frequency trading, capturing price formation driven solely by order flow through mutually stimulating marked Hawkes processes. The model assumes a limit order book framework, accounting for both permanent price impact and transient market impact. Importantly, we incorporate liquidity as a hidden Markov process, influencing the intensities of the point processes governing bid and ask prices. Within this setting, we formulate the optimal liquidation problem as an impulse control problem. We elucidate the dynamics of the hidden Markov chain’s filter and determine the related normalized filtering equations. We then express the value function as the limit of a sequence of auxiliary continuous functions, defined recursively. This characterization enables the use of a dynamic programming principle for optimal stopping problems and the determination of an optimal strategy. It also facilitates the development of an implementable algorithm to approximate the original liquidation problem. We enrich our analysis with numerical results and visualizations of candidate optimal strategies. ...

November 7, 2024 · 2 min · Research Team