false

What's the Price of Monotonicity? A Multi-Dataset Benchmark of Monotone-Constrained Gradient Boosting for Credit PD

What’s the Price of Monotonicity? A Multi-Dataset Benchmark of Monotone-Constrained Gradient Boosting for Credit PD ArXiv ID: 2512.17945 “View on arXiv” Authors: Petr Koklev Abstract Financial institutions face a trade-off between predictive accuracy and interpretability when deploying machine learning models for credit risk. Monotonicity constraints align model behavior with domain knowledge, but their performance cost - the price of monotonicity - is not well quantified. This paper benchmarks monotone-constrained versus unconstrained gradient boosting models for credit probability of default across five public datasets and three libraries. We define the Price of Monotonicity (PoM) as the relative change in standard performance metrics when moving from unconstrained to constrained models, estimated via paired comparisons with bootstrap uncertainty. In our experiments, PoM in AUC ranges from essentially zero to about 2.9 percent: constraints are almost costless on large datasets (typically less than 0.2 percent, often indistinguishable from zero) and most costly on smaller datasets with extensive constraint coverage (around 2-3 percent). Thus, appropriately specified monotonicity constraints can often deliver interpretability with small accuracy losses, particularly in large-scale credit portfolios. ...

December 14, 2025 · 2 min · Research Team

Understanding the Commodity Futures Term Structure Through Signatures

Understanding the Commodity Futures Term Structure Through Signatures ArXiv ID: 2503.00603 “View on arXiv” Authors: Unknown Abstract Signature methods have been widely and effectively used as a tool for feature extraction in statistical learning methods, notably in mathematical finance. They lack, however, interpretability: in the general case, it is unclear why signatures actually work. The present article aims to address this issue directly, by introducing and developing the concept of signature perturbations. In particular, we construct a regular perturbation of the signature of the term structure of log prices for various commodities, in terms of the convenience yield. Our perturbation expansion and rigorous convergence estimates help explain the success of signature-based classification of commodities markets according to their term structure, with the volatility of the convenience yield as the major discriminant. ...

March 1, 2025 · 2 min · Research Team

Alpha Mining and Enhancing via Warm Start Genetic Programming for Quantitative Investment

Alpha Mining and Enhancing via Warm Start Genetic Programming for Quantitative Investment ArXiv ID: 2412.00896 “View on arXiv” Authors: Unknown Abstract Traditional genetic programming (GP) often struggles in stock alpha factor discovery due to its vast search space, overwhelming computational burden, and sporadic effective alphas. We find that GP performs better when focusing on promising regions rather than random searching. This paper proposes a new GP framework with carefully chosen initialization and structural constraints to enhance search performance and improve the interpretability of the alpha factors. This approach is motivated by and mimics the alpha searching practice and aims to boost the efficiency of such a process. Analysis of 2020-2024 Chinese stock market data shows that our method yields superior out-of-sample prediction results and higher portfolio returns than the benchmark. ...

December 1, 2024 · 2 min · Research Team

CatNet: Controlling the False Discovery Rate in LSTM with SHAP Feature Importance and Gaussian Mirrors

CatNet: Controlling the False Discovery Rate in LSTM with SHAP Feature Importance and Gaussian Mirrors ArXiv ID: 2411.16666 “View on arXiv” Authors: Unknown Abstract We introduce CatNet, an algorithm that effectively controls False Discovery Rate (FDR) and selects significant features in LSTM. CatNet employs the derivative of SHAP values to quantify the feature importance, and constructs a vector-formed mirror statistic for FDR control with the Gaussian Mirror algorithm. To avoid instability due to nonlinear or temporal correlations among features, we also propose a new kernel-based independence measure. CatNet performs robustly on different model settings with both simulated and real-world data, which reduces overfitting and improves interpretability of the model. Our framework that introduces SHAP for feature importance in FDR control algorithms and improves Gaussian Mirror can be naturally extended to other time-series or sequential deep learning models. ...

November 25, 2024 · 2 min · Research Team

Ploutos: Towards interpretable stock movement prediction with financial large language model

Ploutos: Towards interpretable stock movement prediction with financial large language model ArXiv ID: 2403.00782 “View on arXiv” Authors: Unknown Abstract Recent advancements in large language models (LLMs) have opened new pathways for many domains. However, the full potential of LLMs in financial investments remains largely untapped. There are two main challenges for typical deep learning-based methods for quantitative finance. First, they struggle to fuse textual and numerical information flexibly for stock movement prediction. Second, traditional methods lack clarity and interpretability, which impedes their application in scenarios where the justification for predictions is essential. To solve the above challenges, we propose Ploutos, a novel financial LLM framework that consists of PloutosGen and PloutosGPT. The PloutosGen contains multiple primary experts that can analyze different modal data, such as text and numbers, and provide quantitative strategies from different perspectives. Then PloutosGPT combines their insights and predictions and generates interpretable rationales. To generate accurate and faithful rationales, the training strategy of PloutosGPT leverage rearview-mirror prompting mechanism to guide GPT-4 to generate rationales, and a dynamic token weighting mechanism to finetune LLM by increasing key tokens weight. Extensive experiments show our framework outperforms the state-of-the-art methods on both prediction accuracy and interpretability. ...

February 18, 2024 · 2 min · Research Team