false

A deep implicit-explicit minimizing movement method for option pricing in jump-diffusion models

A deep implicit-explicit minimizing movement method for option pricing in jump-diffusion models ArXiv ID: 2401.06740 “View on arXiv” Authors: Unknown Abstract We develop a novel deep learning approach for pricing European basket options written on assets that follow jump-diffusion dynamics. The option pricing problem is formulated as a partial integro-differential equation, which is approximated via a new implicit-explicit minimizing movement time-stepping approach, involving approximation by deep, residual-type Artificial Neural Networks (ANNs) for each time step. The integral operator is discretized via two different approaches: (a) a sparse-grid Gauss-Hermite approximation following localised coordinate axes arising from singular value decompositions, and (b) an ANN-based high-dimensional special-purpose quadrature rule. Crucially, the proposed ANN is constructed to ensure the appropriate asymptotic behavior of the solution for large values of the underlyings and also leads to consistent outputs with respect to a priori known qualitative properties of the solution. The performance and robustness with respect to the dimension of these methods are assessed in a series of numerical experiments involving the Merton jump-diffusion model, while a comparison with the deep Galerkin method and the deep BSDE solver with jumps further supports the merits of the proposed approach. ...

January 12, 2024 · 2 min · Research Team

A monotone numerical integration method for mean-variance portfolio optimization under jump-diffusion models

A monotone numerical integration method for mean-variance portfolio optimization under jump-diffusion models ArXiv ID: 2309.05977 “View on arXiv” Authors: Unknown Abstract We develop a efficient, easy-to-implement, and strictly monotone numerical integration method for Mean-Variance (MV) portfolio optimization in realistic contexts, which involve jump-diffusion dynamics of the underlying controlled processes, discrete rebalancing, and the application of investment constraints, namely no-bankruptcy and leverage. A crucial element of the MV portfolio optimization formulation over each rebalancing interval is a convolution integral, which involves a conditional density of the logarithm of the amount invested in the risky asset. Using a known closed-form expression for the Fourier transform of this density, we derive an infinite series representation for the conditional density where each term is strictly positive and explicitly computable. As a result, the convolution integral can be readily approximated through a monotone integration scheme, such as a composite quadrature rule typically available in most programming languages. The computational complexity of our method is an order of magnitude lower than that of existing monotone finite difference methods. To further enhance efficiency, we propose an implementation of the scheme via Fast Fourier Transforms, exploiting the Toeplitz matrix structure. The proposed monotone scheme is proven to be both $\ell_{"\infty"}$-stable and pointwise consistent, and we rigorously establish its pointwise convergence to the unique solution of the MV portfolio optimization problem. We also intuitively demonstrate that, as the rebalancing time interval approaches zero, the proposed scheme converges to a continuously observed impulse control formulation for MV optimization expressed as a Hamilton-Jacobi-Bellman Quasi-Variational Inequality. Numerical results show remarkable agreement with benchmark solutions obtained through finite differences and Monte Carlo simulation, underscoring the effectiveness of our approach. ...

September 12, 2023 · 3 min · Research Team