false

Numerical analysis of American option pricing in a two-asset jump-diffusion model

Numerical analysis of American option pricing in a two-asset jump-diffusion model ArXiv ID: 2410.04745 “View on arXiv” Authors: Unknown Abstract This paper addresses an important gap in rigorous numerical treatments for pricing American options under correlated two-asset jump-diffusion models using the viscosity solution framework, with a particular focus on the Merton model. The pricing of these options is governed by complex two-dimensional (2-D) variational inequalities that incorporate cross-derivative terms and nonlocal integro-differential terms due to the presence of jumps. Existing numerical methods, primarily based on finite differences, often struggle with preserving monotonicity in the approximation of cross-derivatives, a key requirement for ensuring convergence to the viscosity solution. In addition, these methods face challenges in accurately discretizing 2-D jump integrals. We introduce a novel approach to effectively tackle the aforementioned variational inequalities while seamlessly handling cross-derivative terms and nonlocal integro-differential terms through an efficient and straightforward-to-implement monotone integration scheme. Within each timestep, our approach explicitly enforces the inequality constraint, resulting in a 2-D Partial Integro-Differential Equation (PIDE) to solve. Its solution is expressed as a 2-D convolution integral involving the Green’s function of the PIDE. We derive an infinite series representation of this Green’s function, where each term is non-negative and computable. This facilitates the numerical approximation of the PIDE solution through a monotone integration method. To enhance efficiency, we develop an implementation of this monotone scheme via FFTs, exploiting the Toeplitz matrix structure. The proposed method is proved to be both $\ell_{"\infty"} $-stable and consistent in the viscosity sense, ensuring its convergence to the viscosity solution of the variational inequality. Extensive numerical results validate the effectiveness and robustness of our approach. ...

October 7, 2024 · 3 min · Research Team

Unified continuous-time q-learning for mean-field game and mean-field control problems

Unified continuous-time q-learning for mean-field game and mean-field control problems ArXiv ID: 2407.04521 “View on arXiv” Authors: Unknown Abstract This paper studies the continuous-time q-learning in mean-field jump-diffusion models when the population distribution is not directly observable. We propose the integrated q-function in decoupled form (decoupled Iq-function) from the representative agent’s perspective and establish its martingale characterization, which provides a unified policy evaluation rule for both mean-field game (MFG) and mean-field control (MFC) problems. Moreover, we consider the learning procedure where the representative agent updates the population distribution based on his own state values. Depending on the task to solve the MFG or MFC problem, we can employ the decoupled Iq-function differently to characterize the mean-field equilibrium policy or the mean-field optimal policy respectively. Based on these theoretical findings, we devise a unified q-learning algorithm for both MFG and MFC problems by utilizing test policies and the averaged martingale orthogonality condition. For several financial applications in the jump-diffusion setting, we obtain the exact parameterization of the decoupled Iq-functions and the value functions, and illustrate our q-learning algorithm with satisfactory performance. ...

July 5, 2024 · 2 min · Research Team

Prediction of Cryptocurrency Prices through a Path Dependent Monte Carlo Simulation

Prediction of Cryptocurrency Prices through a Path Dependent Monte Carlo Simulation ArXiv ID: 2405.12988 “View on arXiv” Authors: Unknown Abstract In this paper, our focus lies on the Merton’s jump diffusion model, employing jump processes characterized by the compound Poisson process. Our primary objective is to forecast the drift and volatility of the model using a variety of methodologies. We adopt an approach that involves implementing different drift, volatility, and jump terms within the model through various machine learning techniques, traditional methods, and statistical methods on price-volume data. Additionally, we introduce a path-dependent Monte Carlo simulation to model cryptocurrency prices, taking into account the volatility and unexpected jumps in prices. ...

April 10, 2024 · 2 min · Research Team

Semi-analytic pricing of American options in time-dependent jump-diffusion models with exponential jumps

Semi-analytic pricing of American options in time-dependent jump-diffusion models with exponential jumps ArXiv ID: 2308.08760 “View on arXiv” Authors: Unknown Abstract In this paper we propose a semi-analytic approach to pricing American options for time-dependent jump-diffusions models with exponential jumps The idea of the method is to further generalize our approach developed for pricing barrier, [“Itkin et al., 2021”], and American, [“Carr and Itkin, 2021; Itkin and Muravey, 2023”], options in various time-dependent one factor and even stochastic volatility models. Our approach i) allows arbitrary dependencies of the model parameters on time; ii) reduces solution of the pricing problem for American options to a simpler problem of solving a system of an algebraic nonlinear equation for the exercise boundary and a linear Fredholm-Volterra equation for the the option price; iii) the options Greeks solve a similar Fredholm-Volterra linear equation obtained by just differentiating Eq. (25) by the required parameter. Once done, the American option price is presented in close form. ...

August 17, 2023 · 2 min · Research Team