false

High-Dimensional Learning in Finance

High-Dimensional Learning in Finance ArXiv ID: 2506.03780 “View on arXiv” Authors: Hasan Fallahgoul Abstract Recent advances in machine learning have shown promising results for financial prediction using large, over-parameterized models. This paper provides theoretical foundations and empirical validation for understanding when and how these methods achieve predictive success. I examine two key aspects of high-dimensional learning in finance. First, I prove that within-sample standardization in Random Fourier Features implementations fundamentally alters the underlying Gaussian kernel approximation, replacing shift-invariant kernels with training-set dependent alternatives. Second, I establish information-theoretic lower bounds that identify when reliable learning is impossible no matter how sophisticated the estimator. A detailed quantitative calibration of the polynomial lower bound shows that with typical parameter choices, e.g., 12,000 features, 12 monthly observations, and R-square 2-3%, the required sample size to escape the bound exceeds 25-30 years of data–well beyond any rolling-window actually used. Thus, observed out-of-sample success must originate from lower-complexity artefacts rather than from the intended high-dimensional mechanism. ...

June 4, 2025 · 2 min · Research Team

Weak Markovian Approximations of Rough Heston

Weak Markovian Approximations of Rough Heston ArXiv ID: 2309.07023 “View on arXiv” Authors: Unknown Abstract The rough Heston model is a very popular recent model in mathematical finance; however, the lack of Markov and semimartingale properties poses significant challenges in both theory and practice. A way to resolve this problem is to use Markovian approximations of the model. Several previous works have shown that these approximations can be very accurate even when the number of additional factors is very low. Existing error analysis is largely based on the strong error, corresponding to the $L^2$ distance between the kernels. Extending earlier results by [“Abi Jaber and El Euch, SIAM Journal on Financial Mathematics 10(2):309–349, 2019”], we show that the weak error of the Markovian approximations can be bounded using the $L^1$-error in the kernel approximation for general classes of payoff functions for European style options. Moreover, we give specific Markovian approximations which converge super-polynomially in the number of dimensions, and illustrate their numerical superiority in option pricing compared to previously existing approximations. The new approximations also work for the hyper-rough case $H > -1/2$. ...

September 13, 2023 · 2 min · Research Team