false

On lead-lag estimation of non-synchronously observed point processes

On lead-lag estimation of non-synchronously observed point processes ArXiv ID: 2601.01871 “View on arXiv” Authors: Takaaki Shiotani, Takaki Hayashi, Yuta Koike Abstract This paper introduces a new theoretical framework for analyzing lead-lag relationships between point processes, with a special focus on applications to high-frequency financial data. In particular, we are interested in lead-lag relationships between two sequences of order arrival timestamps. The seminal work of Dobrev and Schaumburg proposed model-free measures of cross-market trading activity based on cross-counts of timestamps. While their method is known to yield reliable results, it faces limitations because its original formulation inherently relies on discrete-time observations, an issue we address in this study. Specifically, we formulate the problem of estimating lead-lag relationships in two point processes as that of estimating the shape of the cross-pair correlation function (CPCF) of a bivariate stationary point process, a quantity well-studied in the neuroscience and spatial statistics literature. Within this framework, the prevailing lead-lag time is defined as the location of the CPCF’s sharpest peak. Under this interpretation, the peak location in Dobrev and Schaumburg’s cross-market activity measure can be viewed as an estimator of the lead-lag time in the aforementioned sense. We further propose an alternative lead-lag time estimator based on kernel density estimation and show that it possesses desirable theoretical properties and delivers superior numerical performance. Empirical evidence from high-frequency financial data demonstrates the effectiveness of our proposed method. ...

January 5, 2026 · 2 min · Research Team

Generalized Distribution Prediction for Asset Returns

Generalized Distribution Prediction for Asset Returns ArXiv ID: 2410.23296 “View on arXiv” Authors: Unknown Abstract We present a novel approach for predicting the distribution of asset returns using a quantile-based method with Long Short-Term Memory (LSTM) networks. Our model is designed in two stages: the first focuses on predicting the quantiles of normalized asset returns using asset-specific features, while the second stage incorporates market data to adjust these predictions for broader economic conditions. This results in a generalized model that can be applied across various asset classes, including commodities, cryptocurrencies, as well as synthetic datasets. The predicted quantiles are then converted into full probability distributions through kernel density estimation, allowing for more precise return distribution predictions and inferencing. The LSTM model significantly outperforms a linear quantile regression baseline by 98% and a dense neural network model by over 50%, showcasing its ability to capture complex patterns in financial return distributions across both synthetic and real-world data. By using exclusively asset-class-neutral features, our model achieves robust, generalizable results. ...

October 15, 2024 · 2 min · Research Team

Complexity measure, kernel density estimation, bandwidth selection, and the efficient market hypothesis

Complexity measure, kernel density estimation, bandwidth selection, and the efficient market hypothesis ArXiv ID: 2305.13123 “View on arXiv” Authors: Unknown Abstract We are interested in the nonparametric estimation of the probability density of price returns, using the kernel approach. The output of the method heavily relies on the selection of a bandwidth parameter. Many selection methods have been proposed in the statistical literature. We put forward an alternative selection method based on a criterion coming from information theory and from the physics of complex systems: the bandwidth to be selected maximizes a new measure of complexity, with the aim of avoiding both overfitting and underfitting. We review existing methods of bandwidth selection and show that they lead to contradictory conclusions regarding the complexity of the probability distribution of price returns. This has also some striking consequences in the evaluation of the relevance of the efficient market hypothesis. We apply these methods to real financial data, focusing on the Bitcoin. ...

May 22, 2023 · 2 min · Research Team