false

Temporal Kolmogorov-Arnold Networks (T-KAN) for High-Frequency Limit Order Book Forecasting: Efficiency, Interpretability, and Alpha Decay

Temporal Kolmogorov-Arnold Networks (T-KAN) for High-Frequency Limit Order Book Forecasting: Efficiency, Interpretability, and Alpha Decay ArXiv ID: 2601.02310 “View on arXiv” Authors: Ahmad Makinde Abstract High-Frequency trading (HFT) environments are characterised by large volumes of limit order book (LOB) data, which is notoriously noisy and non-linear. Alpha decay represents a significant challenge, with traditional models such as DeepLOB losing predictive power as the time horizon (k) increases. In this paper, using data from the FI-2010 dataset, we introduce Temporal Kolmogorov-Arnold Networks (T-KAN) to replace the fixed, linear weights of standard LSTMs with learnable B-spline activation functions. This allows the model to learn the ‘shape’ of market signals as opposed to just their magnitude. This resulted in a 19.1% relative improvement in the F1-score at the k = 100 horizon. The efficacy of T-KAN networks cannot be understated, producing a 132.48% return compared to the -82.76% DeepLOB drawdown under 1.0 bps transaction costs. In addition to this, the T-KAN model proves quite interpretable, with the ‘dead-zones’ being clearly visible in the splines. The T-KAN architecture is also uniquely optimized for low-latency FPGA implementation via High level Synthesis (HLS). The code for the experiments in this project can be found at https://github.com/AhmadMak/Temporal-Kolmogorov-Arnold-Networks-T-KAN-for-High-Frequency-Limit-Order-Book-Forecasting. ...

January 5, 2026 · 2 min · Research Team

Boosting the Accuracy of Stock Market Prediction via Multi-Layer Hybrid MTL Structure

Boosting the Accuracy of Stock Market Prediction via Multi-Layer Hybrid MTL Structure ArXiv ID: 2501.09760 “View on arXiv” Authors: Unknown Abstract Accurate stock market prediction provides great opportunities for informed decision-making, yet existing methods struggle with financial data’s non-linear, high-dimensional, and volatile characteristics. Advanced predictive models are needed to effectively address these complexities. This paper proposes a novel multi-layer hybrid multi-task learning (MTL) framework aimed at achieving more efficient stock market predictions. It involves a Transformer encoder to extract complex correspondences between various input features, a Bidirectional Gated Recurrent Unit (BiGRU) to capture long-term temporal relationships, and a Kolmogorov-Arnold Network (KAN) to enhance the learning process. Experimental evaluations indicate that the proposed learning structure achieves great performance, with an MAE as low as 1.078, a MAPE as low as 0.012, and an R^2 as high as 0.98, when compared with other competitive networks. ...

January 1, 2025 · 2 min · Research Team