false

Combining Financial Data and News Articles for Stock Price Movement Prediction Using Large Language Models

Combining Financial Data and News Articles for Stock Price Movement Prediction Using Large Language Models ArXiv ID: 2411.01368 “View on arXiv” Authors: Unknown Abstract Predicting financial markets and stock price movements requires analyzing a company’s performance, historic price movements, industry-specific events alongside the influence of human factors such as social media and press coverage. We assume that financial reports (such as income statements, balance sheets, and cash flow statements), historical price data, and recent news articles can collectively represent aforementioned factors. We combine financial data in tabular format with textual news articles and employ pre-trained Large Language Models (LLMs) to predict market movements. Recent research in LLMs has demonstrated that they are able to perform both tabular and text classification tasks, making them our primary model to classify the multi-modal data. We utilize retrieval augmentation techniques to retrieve and attach relevant chunks of news articles to financial metrics related to a company and prompt the LLMs in zero, two, and four-shot settings. Our dataset contains news articles collected from different sources, historic stock price, and financial report data for 20 companies with the highest trading volume across different industries in the stock market. We utilized recently released language models for our LLM-based classifier, including GPT- 3 and 4, and LLaMA- 2 and 3 models. We introduce an LLM-based classifier capable of performing classification tasks using combination of tabular (structured) and textual (unstructured) data. By using this model, we predicted the movement of a given stock’s price in our dataset with a weighted F1-score of 58.5% and 59.1% and Matthews Correlation Coefficient of 0.175 for both 3-month and 6-month periods. ...

November 2, 2024 · 2 min · Research Team

AI in Investment Analysis: LLMs for Equity Stock Ratings

AI in Investment Analysis: LLMs for Equity Stock Ratings ArXiv ID: 2411.00856 “View on arXiv” Authors: Unknown Abstract Investment Analysis is a cornerstone of the Financial Services industry. The rapid integration of advanced machine learning techniques, particularly Large Language Models (LLMs), offers opportunities to enhance the equity rating process. This paper explores the application of LLMs to generate multi-horizon stock ratings by ingesting diverse datasets. Traditional stock rating methods rely heavily on the expertise of financial analysts, and face several challenges such as data overload, inconsistencies in filings, and delayed reactions to market events. Our study addresses these issues by leveraging LLMs to improve the accuracy and consistency of stock ratings. Additionally, we assess the efficacy of using different data modalities with LLMs for the financial domain. We utilize varied datasets comprising fundamental financial, market, and news data from January 2022 to June 2024, along with GPT-4-32k (v0613) (with a training cutoff in Sep. 2021 to prevent information leakage). Our results show that our benchmark method outperforms traditional stock rating methods when assessed by forward returns, specially when incorporating financial fundamentals. While integrating news data improves short-term performance, substituting detailed news summaries with sentiment scores reduces token use without loss of performance. In many cases, omitting news data entirely enhances performance by reducing bias. Our research shows that LLMs can be leveraged to effectively utilize large amounts of multimodal financial data, as showcased by their effectiveness at the stock rating prediction task. Our work provides a reproducible and efficient framework for generating accurate stock ratings, serving as a cost-effective alternative to traditional methods. Future work will extend to longer timeframes, incorporate diverse data, and utilize newer models for enhanced insights. ...

October 30, 2024 · 2 min · Research Team

Enhancing literature review with LLM and NLP methods. Algorithmic trading case

Enhancing literature review with LLM and NLP methods. Algorithmic trading case ArXiv ID: 2411.05013 “View on arXiv” Authors: Unknown Abstract This study utilizes machine learning algorithms to analyze and organize knowledge in the field of algorithmic trading. By filtering a dataset of 136 million research papers, we identified 14,342 relevant articles published between 1956 and Q1 2020. We compare traditional practices-such as keyword-based algorithms and embedding techniques-with state-of-the-art topic modeling methods that employ dimensionality reduction and clustering. This comparison allows us to assess the popularity and evolution of different approaches and themes within algorithmic trading. We demonstrate the usefulness of Natural Language Processing (NLP) in the automatic extraction of knowledge, highlighting the new possibilities created by the latest iterations of Large Language Models (LLMs) like ChatGPT. The rationale for focusing on this topic stems from our analysis, which reveals that research articles on algorithmic trading are increasing at a faster rate than the overall number of publications. While stocks and main indices comprise more than half of all assets considered, certain asset classes, such as cryptocurrencies, exhibit a much stronger growth trend. Machine learning models have become the most popular methods in recent years. The study demonstrates the efficacy of LLMs in refining datasets and addressing intricate questions about the analyzed articles, such as comparing the efficiency of different models. Our research shows that by decomposing tasks into smaller components and incorporating reasoning steps, we can effectively tackle complex questions supported by case analyses. This approach contributes to a deeper understanding of algorithmic trading methodologies and underscores the potential of advanced NLP techniques in literature reviews. ...

October 23, 2024 · 2 min · Research Team

UCFE: A User-Centric Financial Expertise Benchmark for Large Language Models

UCFE: A User-Centric Financial Expertise Benchmark for Large Language Models ArXiv ID: 2410.14059 “View on arXiv” Authors: Unknown Abstract This paper introduces the UCFE: User-Centric Financial Expertise benchmark, an innovative framework designed to evaluate the ability of large language models (LLMs) to handle complex real-world financial tasks. UCFE benchmark adopts a hybrid approach that combines human expert evaluations with dynamic, task-specific interactions to simulate the complexities of evolving financial scenarios. Firstly, we conducted a user study involving 804 participants, collecting their feedback on financial tasks. Secondly, based on this feedback, we created our dataset that encompasses a wide range of user intents and interactions. This dataset serves as the foundation for benchmarking 11 LLMs services using the LLM-as-Judge methodology. Our results show a significant alignment between benchmark scores and human preferences, with a Pearson correlation coefficient of 0.78, confirming the effectiveness of the UCFE dataset and our evaluation approach. UCFE benchmark not only reveals the potential of LLMs in the financial domain but also provides a robust framework for assessing their performance and user satisfaction. ...

October 17, 2024 · 2 min · Research Team

TradExpert: Revolutionizing Trading with Mixture of Expert LLMs

TradExpert: Revolutionizing Trading with Mixture of Expert LLMs ArXiv ID: 2411.00782 “View on arXiv” Authors: Unknown Abstract The integration of Artificial Intelligence (AI) in the financial domain has opened new avenues for quantitative trading, particularly through the use of Large Language Models (LLMs). However, the challenge of effectively synthesizing insights from diverse data sources and integrating both structured and unstructured data persists. This paper presents TradeExpert, a novel framework that employs a mix of experts (MoE) approach, using four specialized LLMs, each analyzing distinct sources of financial data, including news articles, market data, alpha factors, and fundamental data. The insights of these expert LLMs are further synthesized by a General Expert LLM to make a final prediction or decision. With specific prompts, TradeExpert can be switched between the prediction mode and the ranking mode for stock movement prediction and quantitative stock trading, respectively. In addition to existing benchmarks, we also release a large-scale financial dataset to comprehensively evaluate TradeExpert’s effectiveness. Our experimental results demonstrate TradeExpert’s superior performance across all trading scenarios. ...

October 16, 2024 · 2 min · Research Team

Temporal Relational Reasoning of Large Language Models for Detecting Stock Portfolio Crashes

Temporal Relational Reasoning of Large Language Models for Detecting Stock Portfolio Crashes ArXiv ID: 2410.17266 “View on arXiv” Authors: Unknown Abstract Stock portfolios are often exposed to rare consequential events (e.g., 2007 global financial crisis, 2020 COVID-19 stock market crash), as they do not have enough historical information to learn from. Large Language Models (LLMs) now present a possible tool to tackle this problem, as they can generalize across their large corpus of training data and perform zero-shot reasoning on new events, allowing them to detect possible portfolio crash events without requiring specific training data. However, detecting portfolio crashes is a complex problem that requires more than reasoning abilities. Investors need to dynamically process the impact of each new piece of information found in news articles, analyze the relational network of impacts across different events and portfolio stocks, as well as understand the temporal context between impacts across time-steps, in order to obtain the aggregated impact on the target portfolio. In this work, we propose an algorithmic framework named Temporal Relational Reasoning (TRR). It seeks to emulate the spectrum of human cognitive capabilities used for complex problem-solving, which include brainstorming, memory, attention and reasoning. Through extensive experiments, we show that TRR is able to outperform state-of-the-art techniques on detecting stock portfolio crashes, and demonstrate how each of the proposed components help to contribute to its performance through an ablation study. Additionally, we further explore the possible applications of TRR by extending it to other related complex problems, such as the detection of possible global crisis events in Macroeconomics. ...

October 7, 2024 · 2 min · Research Team

Automate Strategy Finding with LLM in Quant Investment

Automate Strategy Finding with LLM in Quant Investment ArXiv ID: 2409.06289 “View on arXiv” Authors: Unknown Abstract We present a novel three-stage framework leveraging Large Language Models (LLMs) within a risk-aware multi-agent system for automate strategy finding in quantitative finance. Our approach addresses the brittleness of traditional deep learning models in financial applications by: employing prompt-engineered LLMs to generate executable alpha factor candidates across diverse financial data, implementing multimodal agent-based evaluation that filters factors based on market status, predictive quality while maintaining category balance, and deploying dynamic weight optimization that adapts to market conditions. Experimental results demonstrate the robust performance of the strategy in Chinese & US market regimes compared to established benchmarks. Our work extends LLMs capabilities to quantitative trading, providing a scalable architecture for financial signal extraction and portfolio construction. The overall framework significantly outperforms all benchmarks with 53.17% cumulative return on SSE50 (Jan 2023 to Jan 2024), demonstrating superior risk-adjusted performance and downside protection on the market. ...

September 10, 2024 · 2 min · Research Team

StockTime: A Time Series Specialized Large Language Model Architecture for Stock Price Prediction

StockTime: A Time Series Specialized Large Language Model Architecture for Stock Price Prediction ArXiv ID: 2409.08281 “View on arXiv” Authors: Unknown Abstract The stock price prediction task holds a significant role in the financial domain and has been studied for a long time. Recently, large language models (LLMs) have brought new ways to improve these predictions. While recent financial large language models (FinLLMs) have shown considerable progress in financial NLP tasks compared to smaller pre-trained language models (PLMs), challenges persist in stock price forecasting. Firstly, effectively integrating the modalities of time series data and natural language to fully leverage these capabilities remains complex. Secondly, FinLLMs focus more on analysis and interpretability, which can overlook the essential features of time series data. Moreover, due to the abundance of false and redundant information in financial markets, models often produce less accurate predictions when faced with such input data. In this paper, we introduce StockTime, a novel LLM-based architecture designed specifically for stock price data. Unlike recent FinLLMs, StockTime is specifically designed for stock price time series data. It leverages the natural ability of LLMs to predict the next token by treating stock prices as consecutive tokens, extracting textual information such as stock correlations, statistical trends and timestamps directly from these stock prices. StockTime then integrates both textual and time series data into the embedding space. By fusing this multimodal data, StockTime effectively predicts stock prices across arbitrary look-back periods. Our experiments demonstrate that StockTime outperforms recent LLMs, as it gives more accurate predictions while reducing memory usage and runtime costs. ...

August 25, 2024 · 2 min · Research Team

Optimizing Performance: How Compact Models Match or Exceed GPT's Classification Capabilities through Fine-Tuning

Optimizing Performance: How Compact Models Match or Exceed GPT’s Classification Capabilities through Fine-Tuning ArXiv ID: 2409.11408 “View on arXiv” Authors: Unknown Abstract In this paper, we demonstrate that non-generative, small-sized models such as FinBERT and FinDRoBERTa, when fine-tuned, can outperform GPT-3.5 and GPT-4 models in zero-shot learning settings in sentiment analysis for financial news. These fine-tuned models show comparable results to GPT-3.5 when it is fine-tuned on the task of determining market sentiment from daily financial news summaries sourced from Bloomberg. To fine-tune and compare these models, we created a novel database, which assigns a market score to each piece of news without human interpretation bias, systematically identifying the mentioned companies and analyzing whether their stocks have gone up, down, or remained neutral. Furthermore, the paper shows that the assumptions of Condorcet’s Jury Theorem do not hold suggesting that fine-tuned small models are not independent of the fine-tuned GPT models, indicating behavioural similarities. Lastly, the resulted fine-tuned models are made publicly available on HuggingFace, providing a resource for further research in financial sentiment analysis and text classification. ...

August 22, 2024 · 2 min · Research Team

Harnessing Earnings Reports for Stock Predictions: A QLoRA-Enhanced LLM Approach

Harnessing Earnings Reports for Stock Predictions: A QLoRA-Enhanced LLM Approach ArXiv ID: 2408.06634 “View on arXiv” Authors: Unknown Abstract Accurate stock market predictions following earnings reports are crucial for investors. Traditional methods, particularly classical machine learning models, struggle with these predictions because they cannot effectively process and interpret extensive textual data contained in earnings reports and often overlook nuances that influence market movements. This paper introduces an advanced approach by employing Large Language Models (LLMs) instruction fine-tuned with a novel combination of instruction-based techniques and quantized low-rank adaptation (QLoRA) compression. Our methodology integrates ‘base factors’, such as financial metric growth and earnings transcripts, with ’external factors’, including recent market indices performances and analyst grades, to create a rich, supervised dataset. This comprehensive dataset enables our models to achieve superior predictive performance in terms of accuracy, weighted F1, and Matthews correlation coefficient (MCC), especially evident in the comparison with benchmarks such as GPT-4. We specifically highlight the efficacy of the llama-3-8b-Instruct-4bit model, which showcases significant improvements over baseline models. The paper also discusses the potential of expanding the output capabilities to include a ‘Hold’ option and extending the prediction horizon, aiming to accommodate various investment styles and time frames. This study not only demonstrates the power of integrating cutting-edge AI with fine-tuned financial data but also paves the way for future research in enhancing AI-driven financial analysis tools. ...

August 13, 2024 · 2 min · Research Team