false

Can a GPT4-Powered AI Agent Be a Good Enough Performance Attribution Analyst?

Can a GPT4-Powered AI Agent Be a Good Enough Performance Attribution Analyst? ArXiv ID: 2403.10482 “View on arXiv” Authors: Unknown Abstract Performance attribution analysis, defined as the process of explaining the drivers of the excess performance of an investment portfolio against a benchmark, stands as a significant feature of portfolio management and plays a crucial role in the investment decision-making process, particularly within the fund management industry. Rooted in a solid financial and mathematical framework, the importance and methodologies of this analytical technique are extensively documented across numerous academic research papers and books. The integration of large language models (LLMs) and AI agents marks a groundbreaking development in this field. These agents are designed to automate and enhance the performance attribution analysis by accurately calculating and analyzing portfolio performances against benchmarks. In this study, we introduce the application of an AI Agent for a variety of essential performance attribution tasks, including the analysis of performance drivers and utilizing LLMs as calculation engine for multi-level attribution analysis and question-answering (QA) tasks. Leveraging advanced prompt engineering techniques such as Chain-of-Thought (CoT) and Plan and Solve (PS), and employing a standard agent framework from LangChain, the research achieves promising results: it achieves accuracy rates exceeding 93% in analyzing performance drivers, attains 100% in multi-level attribution calculations, and surpasses 84% accuracy in QA exercises that simulate official examination standards. These findings affirm the impactful role of AI agents, prompt engineering and evaluation in advancing portfolio management processes, highlighting a significant development in the practical application and evaluation of Generative AI technologies within the domain. ...

March 15, 2024 · 2 min · Research Team

Alpha-GPT 2.0: Human-in-the-Loop AI for Quantitative Investment

Alpha-GPT 2.0: Human-in-the-Loop AI for Quantitative Investment ArXiv ID: 2402.09746 “View on arXiv” Authors: Unknown Abstract Recently, we introduced a new paradigm for alpha mining in the realm of quantitative investment, developing a new interactive alpha mining system framework, Alpha-GPT. This system is centered on iterative Human-AI interaction based on large language models, introducing a Human-in-the-Loop approach to alpha discovery. In this paper, we present the next-generation Alpha-GPT 2.0 \footnote{“Draft. Work in progress”}, a quantitative investment framework that further encompasses crucial modeling and analysis phases in quantitative investment. This framework emphasizes the iterative, interactive research between humans and AI, embodying a Human-in-the-Loop strategy throughout the entire quantitative investment pipeline. By assimilating the insights of human researchers into the systematic alpha research process, we effectively leverage the Human-in-the-Loop approach, enhancing the efficiency and precision of quantitative investment research. ...

February 15, 2024 · 2 min · Research Team

Learning to Generate Explainable Stock Predictions using Self-Reflective Large Language Models

Learning to Generate Explainable Stock Predictions using Self-Reflective Large Language Models ArXiv ID: 2402.03659 “View on arXiv” Authors: Unknown Abstract Explaining stock predictions is generally a difficult task for traditional non-generative deep learning models, where explanations are limited to visualizing the attention weights on important texts. Today, Large Language Models (LLMs) present a solution to this problem, given their known capabilities to generate human-readable explanations for their decision-making process. However, the task of stock prediction remains challenging for LLMs, as it requires the ability to weigh the varying impacts of chaotic social texts on stock prices. The problem gets progressively harder with the introduction of the explanation component, which requires LLMs to explain verbally why certain factors are more important than the others. On the other hand, to fine-tune LLMs for such a task, one would need expert-annotated samples of explanation for every stock movement in the training set, which is expensive and impractical to scale. To tackle these issues, we propose our Summarize-Explain-Predict (SEP) framework, which utilizes a self-reflective agent and Proximal Policy Optimization (PPO) to let a LLM teach itself how to generate explainable stock predictions in a fully autonomous manner. The reflective agent learns how to explain past stock movements through self-reasoning, while the PPO trainer trains the model to generate the most likely explanations from input texts. The training samples for the PPO trainer are also the responses generated during the reflective process, which eliminates the need for human annotators. Using our SEP framework, we fine-tune a LLM that can outperform both traditional deep-learning and LLM methods in prediction accuracy and Matthews correlation coefficient for the stock classification task. To justify the generalization capability of our framework, we further test it on the portfolio construction task, and demonstrate its effectiveness through various portfolio metrics. ...

February 6, 2024 · 3 min · Research Team

QuantAgent: Seeking Holy Grail in Trading by Self-Improving Large Language Model

QuantAgent: Seeking Holy Grail in Trading by Self-Improving Large Language Model ArXiv ID: 2402.03755 “View on arXiv” Authors: Unknown Abstract Autonomous agents based on Large Language Models (LLMs) that devise plans and tackle real-world challenges have gained prominence.However, tailoring these agents for specialized domains like quantitative investment remains a formidable task. The core challenge involves efficiently building and integrating a domain-specific knowledge base for the agent’s learning process. This paper introduces a principled framework to address this challenge, comprising a two-layer loop.In the inner loop, the agent refines its responses by drawing from its knowledge base, while in the outer loop, these responses are tested in real-world scenarios to automatically enhance the knowledge base with new insights.We demonstrate that our approach enables the agent to progressively approximate optimal behavior with provable efficiency.Furthermore, we instantiate this framework through an autonomous agent for mining trading signals named QuantAgent. Empirical results showcase QuantAgent’s capability in uncovering viable financial signals and enhancing the accuracy of financial forecasts. ...

February 6, 2024 · 2 min · Research Team

BioFinBERT: Finetuning Large Language Models (LLMs) to Analyze Sentiment of Press Releases and Financial Text Around Inflection Points of Biotech Stocks

BioFinBERT: Finetuning Large Language Models (LLMs) to Analyze Sentiment of Press Releases and Financial Text Around Inflection Points of Biotech Stocks ArXiv ID: 2401.11011 “View on arXiv” Authors: Unknown Abstract Large language models (LLMs) are deep learning algorithms being used to perform natural language processing tasks in various fields, from social sciences to finance and biomedical sciences. Developing and training a new LLM can be very computationally expensive, so it is becoming a common practice to take existing LLMs and finetune them with carefully curated datasets for desired applications in different fields. Here, we present BioFinBERT, a finetuned LLM to perform financial sentiment analysis of public text associated with stocks of companies in the biotechnology sector. The stocks of biotech companies developing highly innovative and risky therapeutic drugs tend to respond very positively or negatively upon a successful or failed clinical readout or regulatory approval of their drug, respectively. These clinical or regulatory results are disclosed by the biotech companies via press releases, which are followed by a significant stock response in many cases. In our attempt to design a LLM capable of analyzing the sentiment of these press releases,we first finetuned BioBERT, a biomedical language representation model designed for biomedical text mining, using financial textual databases. Our finetuned model, termed BioFinBERT, was then used to perform financial sentiment analysis of various biotech-related press releases and financial text around inflection points that significantly affected the price of biotech stocks. ...

January 19, 2024 · 2 min · Research Team

FinMem: A Performance-Enhanced LLM Trading Agent with Layered Memory and Character Design

FinMem: A Performance-Enhanced LLM Trading Agent with Layered Memory and Character Design ArXiv ID: 2311.13743 “View on arXiv” Authors: Unknown Abstract Recent advancements in Large Language Models (LLMs) have exhibited notable efficacy in question-answering (QA) tasks across diverse domains. Their prowess in integrating extensive web knowledge has fueled interest in developing LLM-based autonomous agents. While LLMs are efficient in decoding human instructions and deriving solutions by holistically processing historical inputs, transitioning to purpose-driven agents requires a supplementary rational architecture to process multi-source information, establish reasoning chains, and prioritize critical tasks. Addressing this, we introduce \textsc{“FinMem”}, a novel LLM-based agent framework devised for financial decision-making. It encompasses three core modules: Profiling, to customize the agent’s characteristics; Memory, with layered message processing, to aid the agent in assimilating hierarchical financial data; and Decision-making, to convert insights gained from memories into investment decisions. Notably, \textsc{“FinMem”}’s memory module aligns closely with the cognitive structure of human traders, offering robust interpretability and real-time tuning. Its adjustable cognitive span allows for the retention of critical information beyond human perceptual limits, thereby enhancing trading outcomes. This framework enables the agent to self-evolve its professional knowledge, react agilely to new investment cues, and continuously refine trading decisions in the volatile financial environment. We first compare \textsc{“FinMem”} with various algorithmic agents on a scalable real-world financial dataset, underscoring its leading trading performance in stocks. We then fine-tuned the agent’s perceptual span and character setting to achieve a significantly enhanced trading performance. Collectively, \textsc{“FinMem”} presents a cutting-edge LLM agent framework for automated trading, boosting cumulative investment returns. ...

November 23, 2023 · 2 min · Research Team

Integrating Stock Features and Global Information via Large Language Models for Enhanced Stock Return Prediction

Integrating Stock Features and Global Information via Large Language Models for Enhanced Stock Return Prediction ArXiv ID: 2310.05627 “View on arXiv” Authors: Unknown Abstract The remarkable achievements and rapid advancements of Large Language Models (LLMs) such as ChatGPT and GPT-4 have showcased their immense potential in quantitative investment. Traders can effectively leverage these LLMs to analyze financial news and predict stock returns accurately. However, integrating LLMs into existing quantitative models presents two primary challenges: the insufficient utilization of semantic information embedded within LLMs and the difficulties in aligning the latent information within LLMs with pre-existing quantitative stock features. We propose a novel framework consisting of two components to surmount these challenges. The first component, the Local-Global (LG) model, introduces three distinct strategies for modeling global information. These approaches are grounded respectively on stock features, the capabilities of LLMs, and a hybrid method combining the two paradigms. The second component, Self-Correlated Reinforcement Learning (SCRL), focuses on aligning the embeddings of financial news generated by LLMs with stock features within the same semantic space. By implementing our framework, we have demonstrated superior performance in Rank Information Coefficient and returns, particularly compared to models relying only on stock features in the China A-share market. ...

October 9, 2023 · 2 min · Research Team

Enhancing Financial Sentiment Analysis via Retrieval Augmented Large Language Models

Enhancing Financial Sentiment Analysis via Retrieval Augmented Large Language Models ArXiv ID: 2310.04027 “View on arXiv” Authors: Unknown Abstract Financial sentiment analysis is critical for valuation and investment decision-making. Traditional NLP models, however, are limited by their parameter size and the scope of their training datasets, which hampers their generalization capabilities and effectiveness in this field. Recently, Large Language Models (LLMs) pre-trained on extensive corpora have demonstrated superior performance across various NLP tasks due to their commendable zero-shot abilities. Yet, directly applying LLMs to financial sentiment analysis presents challenges: The discrepancy between the pre-training objective of LLMs and predicting the sentiment label can compromise their predictive performance. Furthermore, the succinct nature of financial news, often devoid of sufficient context, can significantly diminish the reliability of LLMs’ sentiment analysis. To address these challenges, we introduce a retrieval-augmented LLMs framework for financial sentiment analysis. This framework includes an instruction-tuned LLMs module, which ensures LLMs behave as predictors of sentiment labels, and a retrieval-augmentation module which retrieves additional context from reliable external sources. Benchmarked against traditional models and LLMs like ChatGPT and LLaMA, our approach achieves 15% to 48% performance gain in accuracy and F1 score. ...

October 6, 2023 · 2 min · Research Team

TradingGPT: Multi-Agent System with Layered Memory and Distinct Characters for Enhanced Financial Trading Performance

TradingGPT: Multi-Agent System with Layered Memory and Distinct Characters for Enhanced Financial Trading Performance ArXiv ID: 2309.03736 “View on arXiv” Authors: Unknown Abstract Large Language Models (LLMs), prominently highlighted by the recent evolution in the Generative Pre-trained Transformers (GPT) series, have displayed significant prowess across various domains, such as aiding in healthcare diagnostics and curating analytical business reports. The efficacy of GPTs lies in their ability to decode human instructions, achieved through comprehensively processing historical inputs as an entirety within their memory system. Yet, the memory processing of GPTs does not precisely emulate the hierarchical nature of human memory. This can result in LLMs struggling to prioritize immediate and critical tasks efficiently. To bridge this gap, we introduce an innovative LLM multi-agent framework endowed with layered memories. We assert that this framework is well-suited for stock and fund trading, where the extraction of highly relevant insights from hierarchical financial data is imperative to inform trading decisions. Within this framework, one agent organizes memory into three distinct layers, each governed by a custom decay mechanism, aligning more closely with human cognitive processes. Agents can also engage in inter-agent debate. In financial trading contexts, LLMs serve as the decision core for trading agents, leveraging their layered memory system to integrate multi-source historical actions and market insights. This equips them to navigate financial changes, formulate strategies, and debate with peer agents about investment decisions. Another standout feature of our approach is to equip agents with individualized trading traits, enhancing memory diversity and decision robustness. These sophisticated designs boost the system’s responsiveness to historical trades and real-time market signals, ensuring superior automated trading accuracy. ...

September 7, 2023 · 2 min · Research Team

GPT-InvestAR: Enhancing Stock Investment Strategies through Annual Report Analysis with Large Language Models

GPT-InvestAR: Enhancing Stock Investment Strategies through Annual Report Analysis with Large Language Models ArXiv ID: 2309.03079 “View on arXiv” Authors: Unknown Abstract Annual Reports of publicly listed companies contain vital information about their financial health which can help assess the potential impact on Stock price of the firm. These reports are comprehensive in nature, going up to, and sometimes exceeding, 100 pages. Analysing these reports is cumbersome even for a single firm, let alone the whole universe of firms that exist. Over the years, financial experts have become proficient in extracting valuable information from these documents relatively quickly. However, this requires years of practice and experience. This paper aims to simplify the process of assessing Annual Reports of all the firms by leveraging the capabilities of Large Language Models (LLMs). The insights generated by the LLM are compiled in a Quant styled dataset and augmented by historical stock price data. A Machine Learning model is then trained with LLM outputs as features. The walkforward test results show promising outperformance wrt S&P500 returns. This paper intends to provide a framework for future work in this direction. To facilitate this, the code has been released as open source. ...

September 6, 2023 · 2 min · Research Team