false

Attention Factors for Statistical Arbitrage

Attention Factors for Statistical Arbitrage ArXiv ID: 2510.11616 “View on arXiv” Authors: Elliot L. Epstein, Rose Wang, Jaewon Choi, Markus Pelger Abstract Statistical arbitrage exploits temporal price differences between similar assets. We develop a framework to jointly identify similar assets through factors, identify mispricing and form a trading policy that maximizes risk-adjusted performance after trading costs. Our Attention Factors are conditional latent factors that are the most useful for arbitrage trading. They are learned from firm characteristic embeddings that allow for complex interactions. We identify time-series signals from the residual portfolios of our factors with a general sequence model. Estimating factors and the arbitrage trading strategy jointly is crucial to maximize profitability after trading costs. In a comprehensive empirical study we show that our Attention Factor model achieves an out-of-sample Sharpe ratio above 4 on the largest U.S. equities over a 24-year period. Our one-step solution yields an unprecedented Sharpe ratio of 2.3 net of transaction costs. We show that weak factors are important for arbitrage trading. ...

October 13, 2025 · 2 min · Research Team

A Dynamic Spatiotemporal and Network ARCH Model with Common Factors

A Dynamic Spatiotemporal and Network ARCH Model with Common Factors ArXiv ID: 2410.16526 “View on arXiv” Authors: Unknown Abstract We introduce a dynamic spatiotemporal volatility model that extends traditional approaches by incorporating spatial, temporal, and spatiotemporal spillover effects, along with volatility-specific observed and latent factors. The model offers a more general network interpretation, making it applicable for studying various types of network spillovers. The primary innovation lies in incorporating volatility-specific latent factors into the dynamic spatiotemporal volatility model. Using Bayesian estimation via the Markov Chain Monte Carlo (MCMC) method, the model offers a robust framework for analyzing the spatial, temporal, and spatiotemporal effects of a log-squared outcome variable on its volatility. We recommend using the deviance information criterion (DIC) and a regularized Bayesian MCMC method to select the number of relevant factors in the model. The model’s flexibility is demonstrated through two applications: a spatiotemporal model applied to the U.S. housing market and another applied to financial stock market networks, both highlighting the model’s ability to capture varying degrees of interconnectedness. In both applications, we find strong spatial/network interactions with relatively stronger spillover effects in the stock market. ...

October 21, 2024 · 2 min · Research Team

KAN based Autoencoders for Factor Models

KAN based Autoencoders for Factor Models ArXiv ID: 2408.02694 “View on arXiv” Authors: Unknown Abstract Inspired by recent advances in Kolmogorov-Arnold Networks (KANs), we introduce a novel approach to latent factor conditional asset pricing models. While previous machine learning applications in asset pricing have predominantly used Multilayer Perceptrons with ReLU activation functions to model latent factor exposures, our method introduces a KAN-based autoencoder which surpasses MLP models in both accuracy and interpretability. Our model offers enhanced flexibility in approximating exposures as nonlinear functions of asset characteristics, while simultaneously providing users with an intuitive framework for interpreting latent factors. Empirical backtesting demonstrates our model’s superior ability to explain cross-sectional risk exposures. Moreover, long-short portfolios constructed using our model’s predictions achieve higher Sharpe ratios, highlighting its practical value in investment management. ...

August 4, 2024 · 2 min · Research Team

Block-diagonal idiosyncratic covariance estimation in high-dimensional factor models for financial time series

Block-diagonal idiosyncratic covariance estimation in high-dimensional factor models for financial time series ArXiv ID: 2407.03781 “View on arXiv” Authors: Unknown Abstract Estimation of high-dimensional covariance matrices in latent factor models is an important topic in many fields and especially in finance. Since the number of financial assets grows while the estimation window length remains of limited size, the often used sample estimator yields noisy estimates which are not even positive definite. Under the assumption of latent factor models, the covariance matrix is decomposed into a common low-rank component and a full-rank idiosyncratic component. In this paper we focus on the estimation of the idiosyncratic component, under the assumption of a grouped structure of the time series, which may arise due to specific factors such as industries, asset classes or countries. We propose a generalized methodology for estimation of the block-diagonal idiosyncratic component by clustering the residual series and applying shrinkage to the obtained blocks in order to ensure positive definiteness. We derive two different estimators based on different clustering methods and test their performance using simulation and historical data. The proposed methods are shown to provide reliable estimates and outperform other state-of-the-art estimators based on thresholding methods. ...

July 4, 2024 · 2 min · Research Team