false

FinDKG: Dynamic Knowledge Graphs with Large Language Models for Detecting Global Trends in Financial Markets

FinDKG: Dynamic Knowledge Graphs with Large Language Models for Detecting Global Trends in Financial Markets ArXiv ID: 2407.10909 “View on arXiv” Authors: Unknown Abstract Dynamic knowledge graphs (DKGs) are popular structures to express different types of connections between objects over time. They can also serve as an efficient mathematical tool to represent information extracted from complex unstructured data sources, such as text or images. Within financial applications, DKGs could be used to detect trends for strategic thematic investing, based on information obtained from financial news articles. In this work, we explore the properties of large language models (LLMs) as dynamic knowledge graph generators, proposing a novel open-source fine-tuned LLM for this purpose, called the Integrated Contextual Knowledge Graph Generator (ICKG). We use ICKG to produce a novel open-source DKG from a corpus of financial news articles, called FinDKG, and we propose an attention-based GNN architecture for analysing it, called KGTransformer. We test the performance of the proposed model on benchmark datasets and FinDKG, demonstrating superior performance on link prediction tasks. Additionally, we evaluate the performance of the KGTransformer on FinDKG for thematic investing, showing it can outperform existing thematic ETFs. ...

July 15, 2024 · 2 min · Research Team

MTRGL:Effective Temporal Correlation Discerning through Multi-modal Temporal Relational Graph Learning

MTRGL:Effective Temporal Correlation Discerning through Multi-modal Temporal Relational Graph Learning ArXiv ID: 2401.14199 “View on arXiv” Authors: Unknown Abstract In this study, we explore the synergy of deep learning and financial market applications, focusing on pair trading. This market-neutral strategy is integral to quantitative finance and is apt for advanced deep-learning techniques. A pivotal challenge in pair trading is discerning temporal correlations among entities, necessitating the integration of diverse data modalities. Addressing this, we introduce a novel framework, Multi-modal Temporal Relation Graph Learning (MTRGL). MTRGL combines time series data and discrete features into a temporal graph and employs a memory-based temporal graph neural network. This approach reframes temporal correlation identification as a temporal graph link prediction task, which has shown empirical success. Our experiments on real-world datasets confirm the superior performance of MTRGL, emphasizing its promise in refining automated pair trading strategies. ...

January 25, 2024 · 2 min · Research Team