false

AI-Trader: Benchmarking Autonomous Agents in Real-Time Financial Markets

AI-Trader: Benchmarking Autonomous Agents in Real-Time Financial Markets ArXiv ID: 2512.10971 “View on arXiv” Authors: Tianyu Fan, Yuhao Yang, Yangqin Jiang, Yifei Zhang, Yuxuan Chen, Chao Huang Abstract Large Language Models (LLMs) have demonstrated remarkable potential as autonomous agents, approaching human-expert performance through advanced reasoning and tool orchestration. However, decision-making in fully dynamic and live environments remains highly challenging, requiring real-time information integration and adaptive responses. While existing efforts have explored live evaluation mechanisms in structured tasks, a critical gap remains in systematic benchmarking for real-world applications, particularly in finance where stringent requirements exist for live strategic responsiveness. To address this gap, we introduce AI-Trader, the first fully-automated, live, and data-uncontaminated evaluation benchmark for LLM agents in financial decision-making. AI-Trader spans three major financial markets: U.S. stocks, A-shares, and cryptocurrencies, with multiple trading granularities to simulate live financial environments. Our benchmark implements a revolutionary fully autonomous minimal information paradigm where agents receive only essential context and must independently search, verify, and synthesize live market information without human intervention. We evaluate six mainstream LLMs across three markets and multiple trading frequencies. Our analysis reveals striking findings: general intelligence does not automatically translate to effective trading capability, with most agents exhibiting poor returns and weak risk management. We demonstrate that risk control capability determines cross-market robustness, and that AI trading strategies achieve excess returns more readily in highly liquid markets than policy-driven environments. These findings expose critical limitations in current autonomous agents and provide clear directions for future improvements. The code and evaluation data are open-sourced to foster community research: https://github.com/HKUDS/AI-Trader. ...

December 1, 2025 · 2 min · Research Team

LiveTradeBench: Seeking Real-World Alpha with Large Language Models

LiveTradeBench: Seeking Real-World Alpha with Large Language Models ArXiv ID: 2511.03628 “View on arXiv” Authors: Haofei Yu, Fenghai Li, Jiaxuan You Abstract Large language models (LLMs) achieve strong performance across benchmarks–from knowledge quizzes and math reasoning to web-agent tasks–but these tests occur in static settings, lacking real dynamics and uncertainty. Consequently, they evaluate isolated reasoning or problem-solving rather than decision-making under uncertainty. To address this, we introduce LiveTradeBench, a live trading environment for evaluating LLM agents in realistic and evolving markets. LiveTradeBench follows three design principles: (i) Live data streaming of market prices and news, eliminating dependence on offline backtesting and preventing information leakage while capturing real-time uncertainty; (ii) a portfolio-management abstraction that extends control from single-asset actions to multi-asset allocation, integrating risk management and cross-asset reasoning; and (iii) multi-market evaluation across structurally distinct environments–U.S. stocks and Polymarket prediction markets–differing in volatility, liquidity, and information flow. At each step, an agent observes prices, news, and its portfolio, then outputs percentage allocations that balance risk and return. Using LiveTradeBench, we run 50-day live evaluations of 21 LLMs across families. Results show that (1) high LMArena scores do not imply superior trading outcomes; (2) models display distinct portfolio styles reflecting risk appetite and reasoning dynamics; and (3) some LLMs effectively leverage live signals to adapt decisions. These findings expose a gap between static evaluation and real-world competence, motivating benchmarks that test sequential decision making and consistency under live uncertainty. ...

November 5, 2025 · 2 min · Research Team

MarketSenseAI 2.0: Enhancing Stock Analysis through LLM Agents

MarketSenseAI 2.0: Enhancing Stock Analysis through LLM Agents ArXiv ID: 2502.00415 “View on arXiv” Authors: Unknown Abstract MarketSenseAI is a novel framework for holistic stock analysis which leverages Large Language Models (LLMs) to process financial news, historical prices, company fundamentals and the macroeconomic environment to support decision making in stock analysis and selection. In this paper, we present the latest advancements on MarketSenseAI, driven by rapid technological expansion in LLMs. Through a novel architecture combining Retrieval-Augmented Generation and LLM agents, the framework processes SEC filings and earnings calls, while enriching macroeconomic analysis through systematic processing of diverse institutional reports. We demonstrate a significant improvement in fundamental analysis accuracy over the previous version. Empirical evaluation on S&P 100 stocks over two years (2023-2024) shows MarketSenseAI achieving cumulative returns of 125.9% compared to the index return of 73.5%, while maintaining comparable risk profiles. Further validation on S&P 500 stocks during 2024 demonstrates the framework’s scalability, delivering a 33.8% higher Sortino ratio than the market. This work marks a significant advancement in applying LLM technology to financial analysis, offering insights into the robustness of LLM-driven investment strategies. ...

February 1, 2025 · 2 min · Research Team

INVESTORBENCH: A Benchmark for Financial Decision-Making Tasks with LLM-based Agent

INVESTORBENCH: A Benchmark for Financial Decision-Making Tasks with LLM-based Agent ArXiv ID: 2412.18174 “View on arXiv” Authors: Unknown Abstract Recent advancements have underscored the potential of large language model (LLM)-based agents in financial decision-making. Despite this progress, the field currently encounters two main challenges: (1) the lack of a comprehensive LLM agent framework adaptable to a variety of financial tasks, and (2) the absence of standardized benchmarks and consistent datasets for assessing agent performance. To tackle these issues, we introduce \textsc{“InvestorBench”}, the first benchmark specifically designed for evaluating LLM-based agents in diverse financial decision-making contexts. InvestorBench enhances the versatility of LLM-enabled agents by providing a comprehensive suite of tasks applicable to different financial products, including single equities like stocks, cryptocurrencies and exchange-traded funds (ETFs). Additionally, we assess the reasoning and decision-making capabilities of our agent framework using thirteen different LLMs as backbone models, across various market environments and tasks. Furthermore, we have curated a diverse collection of open-source, multi-modal datasets and developed a comprehensive suite of environments for financial decision-making. This establishes a highly accessible platform for evaluating financial agents’ performance across various scenarios. ...

December 24, 2024 · 2 min · Research Team

When AI Meets Finance (StockAgent): Large Language Model-based Stock Trading in Simulated Real-world Environments

When AI Meets Finance (StockAgent): Large Language Model-based Stock Trading in Simulated Real-world Environments ArXiv ID: 2407.18957 “View on arXiv” Authors: Unknown Abstract Can AI Agents simulate real-world trading environments to investigate the impact of external factors on stock trading activities (e.g., macroeconomics, policy changes, company fundamentals, and global events)? These factors, which frequently influence trading behaviors, are critical elements in the quest for maximizing investors’ profits. Our work attempts to solve this problem through large language model based agents. We have developed a multi-agent AI system called StockAgent, driven by LLMs, designed to simulate investors’ trading behaviors in response to the real stock market. The StockAgent allows users to evaluate the impact of different external factors on investor trading and to analyze trading behavior and profitability effects. Additionally, StockAgent avoids the test set leakage issue present in existing trading simulation systems based on AI Agents. Specifically, it prevents the model from leveraging prior knowledge it may have acquired related to the test data. We evaluate different LLMs under the framework of StockAgent in a stock trading environment that closely resembles real-world conditions. The experimental results demonstrate the impact of key external factors on stock market trading, including trading behavior and stock price fluctuation rules. This research explores the study of agents’ free trading gaps in the context of no prior knowledge related to market data. The patterns identified through StockAgent simulations provide valuable insights for LLM-based investment advice and stock recommendation. The code is available at https://github.com/MingyuJ666/Stockagent. ...

July 15, 2024 · 2 min · Research Team