false

Machine Learning vs. Randomness: Challenges in Predicting Binary Options Movements

Machine Learning vs. Randomness: Challenges in Predicting Binary Options Movements ArXiv ID: 2511.15960 “View on arXiv” Authors: Gabriel M. Arantes, Richard F. Pinto, Bruno L. Dalmazo, Eduardo N. Borges, Giancarlo Lucca, Viviane L. D. de Mattos, Fabian C. Cardoso, Rafael A. Berri Abstract Binary options trading is often marketed as a field where predictive models can generate consistent profits. However, the inherent randomness and stochastic nature of binary options make price movements highly unpredictable, posing significant challenges for any forecasting approach. This study demonstrates that machine learning algorithms struggle to outperform a simple baseline in predicting binary options movements. Using a dataset of EUR/USD currency pairs from 2021 to 2023, we tested multiple models, including Random Forest, Logistic Regression, Gradient Boosting, and k-Nearest Neighbors (kNN), both before and after hyperparameter optimization. Furthermore, several neural network architectures, including Multi-Layer Perceptrons (MLP) and a Long Short-Term Memory (LSTM) network, were evaluated under different training conditions. Despite these exhaustive efforts, none of the models surpassed the ZeroR baseline accuracy, highlighting the inherent randomness of binary options. These findings reinforce the notion that binary options lack predictable patterns, making them unsuitable for machine learning-based forecasting. ...

November 20, 2025 · 2 min · Research Team

Financial Data Analysis with Robust Federated Logistic Regression

Financial Data Analysis with Robust Federated Logistic Regression ArXiv ID: 2504.20250 “View on arXiv” Authors: Kun Yang, Nikhil Krishnan, Sanjeev R. Kulkarni Abstract In this study, we focus on the analysis of financial data in a federated setting, wherein data is distributed across multiple clients or locations, and the raw data never leaves the local devices. Our primary focus is not only on the development of efficient learning frameworks (for protecting user data privacy) in the field of federated learning but also on the importance of designing models that are easier to interpret. In addition, we care about the robustness of the framework to outliers. To achieve these goals, we propose a robust federated logistic regression-based framework that strives to strike a balance between these goals. To verify the feasibility of our proposed framework, we carefully evaluate its performance not only on independently identically distributed (IID) data but also on non-IID data, especially in scenarios involving outliers. Extensive numerical results collected from multiple public datasets demonstrate that our proposed method can achieve comparable performance to those of classical centralized algorithms, such as Logistical Regression, Decision Tree, and K-Nearest Neighbors, in both binary and multi-class classification tasks. ...

April 28, 2025 · 2 min · Research Team

Optimizing Fintech Marketing: A Comparative Study of Logistic Regression and XGBoost

Optimizing Fintech Marketing: A Comparative Study of Logistic Regression and XGBoost ArXiv ID: 2412.16333 “View on arXiv” Authors: Unknown Abstract As several studies have shown, predicting credit risk is still a major concern for the financial services industry and is receiving a lot of scholarly interest. This area of study is crucial because it aids financial organizations in determining the probability that borrowers would default, which has a direct bearing on lending choices and risk management tactics. Despite the progress made in this domain, there is still a substantial knowledge gap concerning consumer actions that take place prior to the filing of credit card applications. The objective of this study is to predict customer responses to mail campaigns and assess the likelihood of default among those who engage. This research employs advanced machine learning techniques, specifically logistic regression and XGBoost, to analyze consumer behavior and predict responses to direct mail campaigns. By integrating different data preprocessing strategies, including imputation and binning, we enhance the robustness and accuracy of our predictive models. The results indicate that XGBoost consistently outperforms logistic regression across various metrics, particularly in scenarios using categorical binning and custom imputation. These findings suggest that XGBoost is particularly effective in handling complex data structures and provides a strong predictive capability in assessing credit risk. ...

December 20, 2024 · 2 min · Research Team

Innovative Sentiment Analysis and Prediction of Stock Price Using FinBERT, GPT-4 and Logistic Regression: A Data-Driven Approach

Innovative Sentiment Analysis and Prediction of Stock Price Using FinBERT, GPT-4 and Logistic Regression: A Data-Driven Approach ArXiv ID: 2412.06837 “View on arXiv” Authors: Unknown Abstract This study explores the comparative performance of cutting-edge AI models, i.e., Finaance Bidirectional Encoder representations from Transsformers (FinBERT), Generatice Pre-trained Transformer GPT-4, and Logistic Regression, for sentiment analysis and stock index prediction using financial news and the NGX All-Share Index data label. By leveraging advanced natural language processing models like GPT-4 and FinBERT, alongside a traditional machine learning model, Logistic Regression, we aim to classify market sentiment, generate sentiment scores, and predict market price movements. This research highlights global AI advancements in stock markets, showcasing how state-of-the-art language models can contribute to understanding complex financial data. The models were assessed using metrics such as accuracy, precision, recall, F1 score, and ROC AUC. Results indicate that Logistic Regression outperformed the more computationally intensive FinBERT and predefined approach of versatile GPT-4, with an accuracy of 81.83% and a ROC AUC of 89.76%. The GPT-4 predefined approach exhibited a lower accuracy of 54.19% but demonstrated strong potential in handling complex data. FinBERT, while offering more sophisticated analysis, was resource-demanding and yielded a moderate performance. Hyperparameter optimization using Optuna and cross-validation techniques ensured the robustness of the models. This study highlights the strengths and limitations of the practical applications of AI approaches in stock market prediction and presents Logistic Regression as the most efficient model for this task, with FinBERT and GPT-4 representing emerging tools with potential for future exploration and innovation in AI-driven financial analytics ...

December 7, 2024 · 2 min · Research Team

Leveraging Fundamental Analysis for Stock Trend Prediction for Profit

Leveraging Fundamental Analysis for Stock Trend Prediction for Profit ArXiv ID: 2410.03913 “View on arXiv” Authors: Unknown Abstract This paper investigates the application of machine learning models, Long Short-Term Memory (LSTM), one-dimensional Convolutional Neural Networks (1D CNN), and Logistic Regression (LR), for predicting stock trends based on fundamental analysis. Unlike most existing studies that predominantly utilize technical or sentiment analysis, we emphasize the use of a company’s financial statements and intrinsic value for trend forecasting. Using a dataset of 269 data points from publicly traded companies across various sectors from 2019 to 2023, we employ key financial ratios and the Discounted Cash Flow (DCF) model to formulate two prediction tasks: Annual Stock Price Difference (ASPD) and Difference between Current Stock Price and Intrinsic Value (DCSPIV). These tasks assess the likelihood of annual profit and current profitability, respectively. Our results demonstrate that LR models outperform CNN and LSTM models, achieving an average test accuracy of 74.66% for ASPD and 72.85% for DCSPIV. This study contributes to the limited literature on integrating fundamental analysis into machine learning for stock prediction, offering valuable insights for both academic research and practical investment strategies. By leveraging fundamental data, our approach highlights the potential for long-term stock trend prediction, supporting portfolio managers in their decision-making processes. ...

October 4, 2024 · 2 min · Research Team

Stock Market Directional Bias Prediction Using ML Algorithms

Stock Market Directional Bias Prediction Using ML Algorithms ArXiv ID: 2310.16855 “View on arXiv” Authors: Unknown Abstract The stock market has been established since the 13th century, but in the current epoch of time, it is substantially more practicable to anticipate the stock market than it was at any other point in time due to the tools and data that are available for both traditional and algorithmic trading. There are many different machine learning models that can do time-series forecasting in the context of machine learning. These models can be used to anticipate the future prices of assets and/or the directional bias of assets. In this study, we examine and contrast the effectiveness of three different machine learning algorithms, namely, logistic regression, decision tree, and random forest to forecast the movement of the assets traded on the Japanese stock market. In addition, the models are compared to a feed forward deep neural network, and it is found that all of the models consistently reach above 50% in directional bias forecasting for the stock market. The results of our study contribute to a better understanding of the complexity involved in stock market forecasting and give insight on the possible role that machine learning could play in this context. ...

October 24, 2023 · 2 min · Research Team

Linking microblogging sentiments to stock price movement: An application of GPT-4

Linking microblogging sentiments to stock price movement: An application of GPT-4 ArXiv ID: 2308.16771 “View on arXiv” Authors: Unknown Abstract This paper investigates the potential improvement of the GPT-4 Language Learning Model (LLM) in comparison to BERT for modeling same-day daily stock price movements of Apple and Tesla in 2017, based on sentiment analysis of microblogging messages. We recorded daily adjusted closing prices and translated them into up-down movements. Sentiment for each day was extracted from messages on the Stocktwits platform using both LLMs. We develop a novel method to engineer a comprehensive prompt for contextual sentiment analysis which unlocks the true capabilities of modern LLM. This enables us to carefully retrieve sentiments, perceived advantages or disadvantages, and the relevance towards the analyzed company. Logistic regression is used to evaluate whether the extracted message contents reflect stock price movements. As a result, GPT-4 exhibited substantial accuracy, outperforming BERT in five out of six months and substantially exceeding a naive buy-and-hold strategy, reaching a peak accuracy of 71.47 % in May. The study also highlights the importance of prompt engineering in obtaining desired outputs from GPT-4’s contextual abilities. However, the costs of deploying GPT-4 and the need for fine-tuning prompts highlight some practical considerations for its use. ...

August 31, 2023 · 2 min · Research Team