false

Leveraging Fundamental Analysis for Stock Trend Prediction for Profit

Leveraging Fundamental Analysis for Stock Trend Prediction for Profit ArXiv ID: 2410.03913 “View on arXiv” Authors: Unknown Abstract This paper investigates the application of machine learning models, Long Short-Term Memory (LSTM), one-dimensional Convolutional Neural Networks (1D CNN), and Logistic Regression (LR), for predicting stock trends based on fundamental analysis. Unlike most existing studies that predominantly utilize technical or sentiment analysis, we emphasize the use of a company’s financial statements and intrinsic value for trend forecasting. Using a dataset of 269 data points from publicly traded companies across various sectors from 2019 to 2023, we employ key financial ratios and the Discounted Cash Flow (DCF) model to formulate two prediction tasks: Annual Stock Price Difference (ASPD) and Difference between Current Stock Price and Intrinsic Value (DCSPIV). These tasks assess the likelihood of annual profit and current profitability, respectively. Our results demonstrate that LR models outperform CNN and LSTM models, achieving an average test accuracy of 74.66% for ASPD and 72.85% for DCSPIV. This study contributes to the limited literature on integrating fundamental analysis into machine learning for stock prediction, offering valuable insights for both academic research and practical investment strategies. By leveraging fundamental data, our approach highlights the potential for long-term stock trend prediction, supporting portfolio managers in their decision-making processes. ...

October 4, 2024 · 2 min · Research Team

GARCH-Informed Neural Networks for Volatility Prediction in Financial Markets

GARCH-Informed Neural Networks for Volatility Prediction in Financial Markets ArXiv ID: 2410.00288 “View on arXiv” Authors: Unknown Abstract Volatility, which indicates the dispersion of returns, is a crucial measure of risk and is hence used extensively for pricing and discriminating between different financial investments. As a result, accurate volatility prediction receives extensive attention. The Generalized Autoregressive Conditional Heteroscedasticity (GARCH) model and its succeeding variants are well established models for stock volatility forecasting. More recently, deep learning models have gained popularity in volatility prediction as they demonstrated promising accuracy in certain time series prediction tasks. Inspired by Physics-Informed Neural Networks (PINN), we constructed a new, hybrid Deep Learning model that combines the strengths of GARCH with the flexibility of a Long Short-Term Memory (LSTM) Deep Neural Network (DNN), thus capturing and forecasting market volatility more accurately than either class of models are capable of on their own. We refer to this novel model as a GARCH-Informed Neural Network (GINN). When compared to other time series models, GINN showed superior out-of-sample prediction performance in terms of the Coefficient of Determination ($R^2$), Mean Squared Error (MSE), and Mean Absolute Error (MAE). ...

September 30, 2024 · 2 min · Research Team