false

Multimodal Insights into Credit Risk Modelling: Integrating Climate and Text Data for Default Prediction

Multimodal Insights into Credit Risk Modelling: Integrating Climate and Text Data for Default Prediction ArXiv ID: 2601.00478 “View on arXiv” Authors: Zongxiao Wu, Ran Liu, Jiang Dai, Dan Luo Abstract Credit risk assessment increasingly relies on diverse sources of information beyond traditional structured financial data, particularly for micro and small enterprises (mSEs) with limited financial histories. This study proposes a multimodal framework that integrates structured credit variables, climate panel data, and unstructured textual narratives within a unified learning architecture. Specifically, we use long short-term memory (LSTM), the gated recurrent unit (GRU), and transformer models to analyse the interplay between these data modalities. The empirical results demonstrate that unimodal models based on climate or text data outperform those relying solely on structured data, while the integration of multiple data modalities yields significant improvements in credit default prediction. Using SHAP-based explainability methods, we find that physical climate risks play an important role in default prediction, with water-logging by rain emerging as the most influential factor. Overall, this study demonstrates the potential of multimodal approaches in AI-enabled decision-making, which provides robust tools for credit risk assessment while contributing to the broader integration of environmental and textual insights into predictive analytics. ...

January 1, 2026 · 2 min · Research Team

Adaptive Weighted Genetic Algorithm-Optimized SVR for Robust Long-Term Forecasting of Global Stock Indices for investment decisions

Adaptive Weighted Genetic Algorithm-Optimized SVR for Robust Long-Term Forecasting of Global Stock Indices for investment decisions ArXiv ID: 2512.15113 “View on arXiv” Authors: Mohit Beniwal Abstract Long-term price forecasting remains a formidable challenge due to the inherent uncertainty over the long term, despite some success in short-term predictions. Nonetheless, accurate long-term forecasts are essential for high-net-worth individuals, institutional investors, and traders. The proposed improved genetic algorithm-optimized support vector regression (IGA-SVR) model is specifically designed for long-term price prediction of global indices. The performance of the IGA-SVR model is rigorously evaluated and compared against the state-of-the-art baseline models, the Long Short-Term Memory (LSTM), and the forward-validating genetic algorithm optimized support vector regression (OGA-SVR). Extensive testing was conducted on the five global indices, namely Nifty, Dow Jones Industrial Average (DJI), DAX Performance Index (DAX), Nikkei 225 (N225), and Shanghai Stock Exchange Composite Index (SSE) from 2021 to 2024 of daily price prediction up to a year. Overall, the proposed IGA-SVR model achieved a reduction in MAPE by 19.87% compared to LSTM and 50.03% compared to OGA-SVR, demonstrating its superior performance in long-term daily price forecasting of global indices. Further, the execution time for LSTM was approximately 20 times higher than that of IGA-SVR, highlighting the high accuracy and computational efficiency of the proposed model. The genetic algorithm selects the optimal hyperparameters of SVR by minimizing the arithmetic mean of the Mean Absolute Percentage Error (MAPE) calculated over the full training dataset and the most recent five years of training data. This purposefully designed training methodology adjusts for recent trends while retaining long-term trend information, thereby offering enhanced generalization compared to the LSTM and rolling-forward validation approach employed by OGA-SVR, which forgets long-term trends and suffers from recency bias. ...

December 17, 2025 · 3 min · Research Team

Hybrid LSTM and PPO Networks for Dynamic Portfolio Optimization

Hybrid LSTM and PPO Networks for Dynamic Portfolio Optimization ArXiv ID: 2511.17963 “View on arXiv” Authors: Jun Kevin, Pujianto Yugopuspito Abstract This paper introduces a hybrid framework for portfolio optimization that fuses Long Short-Term Memory (LSTM) forecasting with a Proximal Policy Optimization (PPO) reinforcement learning strategy. The proposed system leverages the predictive power of deep recurrent networks to capture temporal dependencies, while the PPO agent adaptively refines portfolio allocations in continuous action spaces, allowing the system to anticipate trends while adjusting dynamically to market shifts. Using multi-asset datasets covering U.S. and Indonesian equities, U.S. Treasuries, and major cryptocurrencies from January 2018 to December 2024, the model is evaluated against several baselines, including equal-weight, index-style, and single-model variants (LSTM-only and PPO-only). The framework’s performance is benchmarked against equal-weighted, index-based, and single-model approaches (LSTM-only and PPO-only) using annualized return, volatility, Sharpe ratio, and maximum drawdown metrics, each adjusted for transaction costs. The results indicate that the hybrid architecture delivers higher returns and stronger resilience under non-stationary market regimes, suggesting its promise as a robust, AI-driven framework for dynamic portfolio optimization. ...

November 22, 2025 · 2 min · Research Team

Integration of LSTM Networks in Random Forest Algorithms for Stock Market Trading Predictions

Integration of LSTM Networks in Random Forest Algorithms for Stock Market Trading Predictions ArXiv ID: 2512.02036 “View on arXiv” Authors: Juan C. King, Jose M. Amigo Abstract The aim of this paper is the analysis and selection of stock trading systems that combine different models with data of different nature, such as financial and microeconomic information. Specifically, based on previous work by the authors and applying advanced techniques of Machine Learning and Deep Learning, our objective is to formulate trading algorithms for the stock market with empirically tested statistical advantages, thus improving results published in the literature. Our approach integrates Long Short-Term Memory (LSTM) networks with algorithms based on decision trees, such as Random Forest and Gradient Boosting. While the former analyze price patterns of financial assets, the latter are fed with economic data of companies. Numerical simulations of algorithmic trading with data from international companies and 10-weekday predictions confirm that an approach based on both fundamental and technical variables can outperform the usual approaches, which do not combine those two types of variables. In doing so, Random Forest turned out to be the best performer among the decision trees. We also discuss how the prediction performance of such a hybrid approach can be boosted by selecting the technical variables. ...

November 20, 2025 · 2 min · Research Team

Statistical Arbitrage in Polish Equities Market Using Deep Learning Techniques

Statistical Arbitrage in Polish Equities Market Using Deep Learning Techniques ArXiv ID: 2512.02037 “View on arXiv” Authors: Marek Adamczyk, Michał Dąbrowski Abstract We study a systematic approach to a popular Statistical Arbitrage technique: Pairs Trading. Instead of relying on two highly correlated assets, we replace the second asset with a replication of the first using risk factor representations. These factors are obtained through Principal Components Analysis (PCA), exchange traded funds (ETFs), and, as our main contribution, Long Short Term Memory networks (LSTMs). Residuals between the main asset and its replication are examined for mean reversion properties, and trading signals are generated for sufficiently fast mean reverting portfolios. Beyond introducing a deep learning based replication method, we adapt the framework of Avellaneda and Lee (2008) to the Polish market. Accordingly, components of WIG20, mWIG40, and selected sector indices replace the original S&P500 universe, and market parameters such as the risk free rate and transaction costs are updated to reflect local conditions. We outline the full strategy pipeline: risk factor construction, residual modeling via the Ornstein Uhlenbeck process, and signal generation. Each replication technique is described together with its practical implementation. Strategy performance is evaluated over two periods: 2017-2019 and the recessive year 2020. All methods yield profits in 2017-2019, with PCA achieving roughly 20 percent cumulative return and an annualized Sharpe ratio of up to 2.63. Despite multiple adaptations, our conclusions remain consistent with those of the original paper. During the COVID-19 recession, only the ETF based approach remains profitable (about 5 percent annual return), while PCA and LSTM methods underperform. LSTM results, although negative, are promising and indicate potential for future optimization. ...

November 20, 2025 · 2 min · Research Team

Bitcoin Price Forecasting Based on Hybrid Variational Mode Decomposition and Long Short Term Memory Network

Bitcoin Price Forecasting Based on Hybrid Variational Mode Decomposition and Long Short Term Memory Network ArXiv ID: 2510.15900 “View on arXiv” Authors: Emmanuel Boadi Abstract This study proposes a hybrid deep learning model for forecasting the price of Bitcoin, as the digital currency is known to exhibit frequent fluctuations. The models used are the Variational Mode Decomposition (VMD) and the Long Short-Term Memory (LSTM) network. First, VMD is used to decompose the original Bitcoin price series into Intrinsic Mode Functions (IMFs). Each IMF is then modeled using an LSTM network to capture temporal patterns more effectively. The individual forecasts from the IMFs are aggregated to produce the final prediction of the original Bitcoin Price Series. To determine the prediction power of the proposed hybrid model, a comparative analysis was conducted against the standard LSTM. The results confirmed that the hybrid VMD+LSTM model outperforms the standard LSTM across all the evaluation metrics, including RMSE, MAE and R2 and also provides a reliable 30-day forecast. ...

September 11, 2025 · 2 min · Research Team

Deep Learning for Conditional Asset Pricing Models

Deep Learning for Conditional Asset Pricing Models ArXiv ID: 2509.04812 “View on arXiv” Authors: Hongyi Liu Abstract We propose a new pseudo-Siamese Network for Asset Pricing (SNAP) model, based on deep learning approaches, for conditional asset pricing. Our model allows for the deep alpha, deep beta and deep factor risk premia conditional on high dimensional observable information of financial characteristics and macroeconomic states, while storing the long-term dependency of the informative features through long short-term memory network. We apply this method to monthly U.S. stock returns from 1970-2019 and find that our pseudo-SNAP model outperforms the benchmark approaches in terms of out-of-sample prediction and out-of-sample Sharpe ratio. In addition, we also apply our method to calculate deep mispricing errors which we use to construct an arbitrage portfolio K-Means clustering. We find that the arbitrage portfolio has significant alphas. ...

September 5, 2025 · 2 min · Research Team

Advancing Exchange Rate Forecasting: Leveraging Machine Learning and AI for Enhanced Accuracy in Global Financial Markets

Advancing Exchange Rate Forecasting: Leveraging Machine Learning and AI for Enhanced Accuracy in Global Financial Markets ArXiv ID: 2506.09851 “View on arXiv” Authors: Md. Yeasin Rahat, Rajan Das Gupta, Nur Raisa Rahman, Sudipto Roy Pritom, Samiur Rahman Shakir, Md Imrul Hasan Showmick, Md. Jakir Hossen Abstract The prediction of foreign exchange rates, such as the US Dollar (USD) to Bangladeshi Taka (BDT), plays a pivotal role in global financial markets, influencing trade, investments, and economic stability. This study leverages historical USD/BDT exchange rate data from 2018 to 2023, sourced from Yahoo Finance, to develop advanced machine learning models for accurate forecasting. A Long Short-Term Memory (LSTM) neural network is employed, achieving an exceptional accuracy of 99.449%, a Root Mean Square Error (RMSE) of 0.9858, and a test loss of 0.8523, significantly outperforming traditional methods like ARIMA (RMSE 1.342). Additionally, a Gradient Boosting Classifier (GBC) is applied for directional prediction, with backtesting on a $10,000 initial capital revealing a 40.82% profitable trade rate, though resulting in a net loss of $20,653.25 over 49 trades. The study analyzes historical trends, showing a decline in BDT/USD rates from 0.012 to 0.009, and incorporates normalized daily returns to capture volatility. These findings highlight the potential of deep learning in forex forecasting, offering traders and policymakers robust tools to mitigate risks. Future work could integrate sentiment analysis and real-time economic indicators to further enhance model adaptability in volatile markets. ...

June 11, 2025 · 2 min · Research Team

An Advanced Ensemble Deep Learning Framework for Stock Price Prediction Using VAE, Transformer, and LSTM Model

An Advanced Ensemble Deep Learning Framework for Stock Price Prediction Using VAE, Transformer, and LSTM Model ArXiv ID: 2503.22192 “View on arXiv” Authors: Unknown Abstract This research proposes a cutting-edge ensemble deep learning framework for stock price prediction by combining three advanced neural network architectures: The particular areas of interest for the research include but are not limited to: Variational Autoencoder (VAE), Transformer, and Long Short-Term Memory (LSTM) networks. The presented framework is aimed to substantially utilize the advantages of each model which would allow for achieving the identification of both linear and non-linear relations in stock price movements. To improve the accuracy of its predictions it uses rich set of technical indicators and it scales its predictors based on the current market situation. By trying out the framework on several stock data sets, and benchmarking the results against single models and conventional forecasting, the ensemble method exhibits consistently high accuracy and reliability. The VAE is able to learn linear representation on high-dimensional data while the Transformer outstandingly perform in recognizing long-term patterns on the stock price data. LSTM, based on its characteristics of being a model that can deal with sequences, brings additional improvements to the given framework, especially regarding temporal dynamics and fluctuations. Combined, these components provide exceptional directional performance and a very small disparity in the predicted results. The present solution has given a probable concept that can handle the inherent problem of stock price prediction with high reliability and scalability. Compared to the performance of individual proposals based on the neural network, as well as classical methods, the proposed ensemble framework demonstrates the advantages of combining different architectures. It has a very important application in algorithmic trading, risk analysis, and control and decision-making for finance professions and scholars. ...

March 28, 2025 · 2 min · Research Team

Stock Price Prediction Using a Hybrid LSTM-GNN Model: Integrating Time-Series and Graph-Based Analysis

Stock Price Prediction Using a Hybrid LSTM-GNN Model: Integrating Time-Series and Graph-Based Analysis ArXiv ID: 2502.15813 “View on arXiv” Authors: Unknown Abstract This paper presents a novel hybrid model that integrates long-short-term memory (LSTM) networks and Graph Neural Networks (GNNs) to significantly enhance the accuracy of stock market predictions. The LSTM component adeptly captures temporal patterns in stock price data, effectively modeling the time series dynamics of financial markets. Concurrently, the GNN component leverages Pearson correlation and association analysis to model inter-stock relational data, capturing complex nonlinear polyadic dependencies influencing stock prices. The model is trained and evaluated using an expanding window validation approach, enabling continuous learning from increasing amounts of data and adaptation to evolving market conditions. Extensive experiments conducted on historical stock data demonstrate that our hybrid LSTM-GNN model achieves a mean square error (MSE) of 0.00144, representing a substantial reduction of 10.6% compared to the MSE of the standalone LSTM model of 0.00161. Furthermore, the hybrid model outperforms traditional and advanced benchmarks, including linear regression, convolutional neural networks (CNN), and dense networks. These compelling results underscore the significant potential of combining temporal and relational data through a hybrid approach, offering a powerful tool for real-time trading and financial analysis. ...

February 19, 2025 · 2 min · Research Team