false

Exploring Sectoral Profitability in the Indian Stock Market Using Deep Learning

Exploring Sectoral Profitability in the Indian Stock Market Using Deep Learning ArXiv ID: 2407.01572 “View on arXiv” Authors: Unknown Abstract This paper explores using a deep learning Long Short-Term Memory (LSTM) model for accurate stock price prediction and its implications for portfolio design. Despite the efficient market hypothesis suggesting that predicting stock prices is impossible, recent research has shown the potential of advanced algorithms and predictive models. The study builds upon existing literature on stock price prediction methods, emphasizing the shift toward machine learning and deep learning approaches. Using historical stock prices of 180 stocks across 18 sectors listed on the NSE, India, the LSTM model predicts future prices. These predictions guide buy/sell decisions for each stock and analyze sector profitability. The study’s main contributions are threefold: introducing an optimized LSTM model for robust portfolio design, utilizing LSTM predictions for buy/sell transactions, and insights into sector profitability and volatility. Results demonstrate the efficacy of the LSTM model in accurately predicting stock prices and informing investment decisions. By comparing sector profitability and prediction accuracy, the work provides valuable insights into the dynamics of the current financial markets in India. ...

May 28, 2024 · 2 min · Research Team

Review of deep learning models for crypto price prediction: implementation and evaluation

Review of deep learning models for crypto price prediction: implementation and evaluation ArXiv ID: 2405.11431 “View on arXiv” Authors: Unknown Abstract There has been much interest in accurate cryptocurrency price forecast models by investors and researchers. Deep Learning models are prominent machine learning techniques that have transformed various fields and have shown potential for finance and economics. Although various deep learning models have been explored for cryptocurrency price forecasting, it is not clear which models are suitable due to high market volatility. In this study, we review the literature about deep learning for cryptocurrency price forecasting and evaluate novel deep learning models for cryptocurrency stock price prediction. Our deep learning models include variants of long short-term memory (LSTM) recurrent neural networks, variants of convolutional neural networks (CNNs), and the Transformer model. We evaluate univariate and multivariate approaches for multi-step ahead predicting of cryptocurrencies close-price. We also carry out volatility analysis on the four cryptocurrencies which reveals significant fluctuations in their prices throughout the COVID-19 pandemic. Additionally, we investigate the prediction accuracy of two scenarios identified by different training sets for the models. First, we use the pre-COVID-19 datasets to model cryptocurrency close-price forecasting during the early period of COVID-19. Secondly, we utilise data from the COVID-19 period to predict prices for 2023 to 2024. Our results show that the convolutional LSTM with a multivariate approach provides the best prediction accuracy in two major experimental settings. Our results also indicate that the multivariate deep learning models exhibit better performance in forecasting four different cryptocurrencies when compared to the univariate models. ...

May 19, 2024 · 3 min · Research Team

Prediction Of Cryptocurrency Prices Using LSTM, SVM And Polynomial Regression

Prediction Of Cryptocurrency Prices Using LSTM, SVM And Polynomial Regression ArXiv ID: 2403.03410 “View on arXiv” Authors: Unknown Abstract The rapid development of information technology, especially the Internet, has facilitated users with a quick and easy way to seek information. With these convenience offered by internet services, many individuals who initially invested in gold and precious metals are now shifting into digital investments in form of cryptocurrencies. However, investments in crypto coins are filled with uncertainties and fluctuation in daily basis. This risk posed as significant challenges for coin investors that could result in substantial investment losses. The uncertainty of the value of these crypto coins is a critical issue in the field of coin investment. Forecasting, is one of the methods used to predict the future value of these crypto coins. By utilizing the models of Long Short Term Memory, Support Vector Machine, and Polynomial Regression algorithm for forecasting, a performance comparison is conducted to determine which algorithm model is most suitable for predicting crypto currency prices. The mean square error is employed as a benchmark for the comparison. By applying those three constructed algorithm models, the Support Vector Machine uses a linear kernel to produce the smallest mean square error compared to the Long Short Term Memory and Polynomial Regression algorithm models, with a mean square error value of 0.02. Keywords: Cryptocurrency, Forecasting, Long Short Term Memory, Mean Square Error, Polynomial Regression, Support Vector Machine ...

March 6, 2024 · 2 min · Research Team

Long Short-Term Memory Pattern Recognition in Currency Trading

Long Short-Term Memory Pattern Recognition in Currency Trading ArXiv ID: 2403.18839 “View on arXiv” Authors: Unknown Abstract This study delves into the analysis of financial markets through the lens of Wyckoff Phases, a framework devised by Richard D. Wyckoff in the early 20th century. Focusing on the accumulation pattern within the Wyckoff framework, the research explores the phases of trading range and secondary test, elucidating their significance in understanding market dynamics and identifying potential trading opportunities. By dissecting the intricacies of these phases, the study sheds light on the creation of liquidity through market structure, offering insights into how traders can leverage this knowledge to anticipate price movements and make informed decisions. The effective detection and analysis of Wyckoff patterns necessitate robust computational models capable of processing complex market data, with spatial data best analyzed using Convolutional Neural Networks (CNNs) and temporal data through Long Short-Term Memory (LSTM) models. The creation of training data involves the generation of swing points, representing significant market movements, and filler points, introducing noise and enhancing model generalization. Activation functions, such as the sigmoid function, play a crucial role in determining the output behavior of neural network models. The results of the study demonstrate the remarkable efficacy of deep learning models in detecting Wyckoff patterns within financial data, underscoring their potential for enhancing pattern recognition and analysis in financial markets. In conclusion, the study highlights the transformative potential of AI-driven approaches in financial analysis and trading strategies, with the integration of AI technologies shaping the future of trading and investment practices. ...

February 23, 2024 · 2 min · Research Team

Financial Time-Series Forecasting: Towards Synergizing Performance And Interpretability Within a Hybrid Machine Learning Approach

Financial Time-Series Forecasting: Towards Synergizing Performance And Interpretability Within a Hybrid Machine Learning Approach ArXiv ID: 2401.00534 “View on arXiv” Authors: Unknown Abstract In the realm of cryptocurrency, the prediction of Bitcoin prices has garnered substantial attention due to its potential impact on financial markets and investment strategies. This paper propose a comparative study on hybrid machine learning algorithms and leverage on enhancing model interpretability. Specifically, linear regression(OLS, LASSO), long-short term memory(LSTM), decision tree regressors are introduced. Through the grounded experiments, we observe linear regressor achieves the best performance among candidate models. For the interpretability, we carry out a systematic overview on the preprocessing techniques of time-series statistics, including decomposition, auto-correlational function, exponential triple forecasting, which aim to excavate latent relations and complex patterns appeared in the financial time-series forecasting. We believe this work may derive more attention and inspire more researches in the realm of time-series analysis and its realistic applications. ...

December 31, 2023 · 2 min · Research Team

Dual-Class Stocks: Can They Serve as Effective Predictors?

Dual-Class Stocks: Can They Serve as Effective Predictors? ArXiv ID: 2310.16845 “View on arXiv” Authors: Unknown Abstract Kardemir Karabuk Iron Steel Industry Trade & Co. Inc., ranked as the 24th largest industrial company in Turkey, offers three distinct stocks listed on the Borsa Istanbul: KRDMA, KRDMB, and KRDMD. These stocks, sharing the sole difference in voting power, have exhibited significant price divergence over an extended period. This paper conducts an in-depth analysis of the divergence patterns observed in these three stock prices from January 2001 to July 2023. Additionally, it introduces an innovative training set selection rule tailored for LSTM models, incorporating a rolling training set, and demonstrates its significant predictive superiority over the conventional use of LSTM models with large training sets. Despite their strong correlation, the study found no compelling evidence supporting the efficiency of dual-class stocks as predictors of each other’s performance. ...

October 9, 2023 · 2 min · Research Team

NoxTrader: LSTM-Based Stock Return Momentum Prediction for Quantitative Trading

NoxTrader: LSTM-Based Stock Return Momentum Prediction for Quantitative Trading ArXiv ID: 2310.00747 “View on arXiv” Authors: Unknown Abstract We introduce NoxTrader, a sophisticated system designed for portfolio construction and trading execution with the primary objective of achieving profitable outcomes in the stock market, specifically aiming to generate moderate to long-term profits. The underlying learning process of NoxTrader is rooted in the assimilation of valuable insights derived from historical trading data, particularly focusing on time-series analysis due to the nature of the dataset employed. In our approach, we utilize price and volume data of US stock market for feature engineering to generate effective features, including Return Momentum, Week Price Momentum, and Month Price Momentum. We choose the Long Short-Term Memory (LSTM)model to capture continuous price trends and implement dynamic model updates during the trading execution process, enabling the model to continuously adapt to the current market trends. Notably, we have developed a comprehensive trading backtesting system - NoxTrader, which allows us to manage portfolios based on predictive scores and utilize custom evaluation metrics to conduct a thorough assessment of our trading performance. Our rigorous feature engineering and careful selection of prediction targets enable us to generate prediction data with an impressive correlation range between 0.65 and 0.75. Finally, we monitor the dispersion of our prediction data and perform a comparative analysis against actual market data. Through the use of filtering techniques, we improved the initial -60% investment return to 325%. ...

October 1, 2023 · 2 min · Research Team

Predicting Financial Market Trends using Time Series Analysis and Natural Language Processing

Predicting Financial Market Trends using Time Series Analysis and Natural Language Processing ArXiv ID: 2309.00136 “View on arXiv” Authors: Unknown Abstract Forecasting financial market trends through time series analysis and natural language processing poses a complex and demanding undertaking, owing to the numerous variables that can influence stock prices. These variables encompass a spectrum of economic and political occurrences, as well as prevailing public attitudes. Recent research has indicated that the expression of public sentiments on social media platforms such as Twitter may have a noteworthy impact on the determination of stock prices. The objective of this study was to assess the viability of Twitter sentiments as a tool for predicting stock prices of major corporations such as Tesla, Apple. Our study has revealed a robust association between the emotions conveyed in tweets and fluctuations in stock prices. Our findings indicate that positivity, negativity, and subjectivity are the primary determinants of fluctuations in stock prices. The data was analyzed utilizing the Long-Short Term Memory neural network (LSTM) model, which is currently recognized as the leading methodology for predicting stock prices by incorporating Twitter sentiments and historical stock prices data. The models utilized in our study demonstrated a high degree of reliability and yielded precise outcomes for the designated corporations. In summary, this research emphasizes the significance of incorporating public opinions into the prediction of stock prices. The application of Time Series Analysis and Natural Language Processing methodologies can yield significant scientific findings regarding financial market patterns, thereby facilitating informed decision-making among investors. The results of our study indicate that the utilization of Twitter sentiments can serve as a potent instrument for forecasting stock prices, and ought to be factored in when formulating investment strategies. ...

August 31, 2023 · 2 min · Research Team

Recurrent Neural Networks with more flexible memory: better predictions than rough volatility

Recurrent Neural Networks with more flexible memory: better predictions than rough volatility ArXiv ID: 2308.08550 “View on arXiv” Authors: Unknown Abstract We extend recurrent neural networks to include several flexible timescales for each dimension of their output, which mechanically improves their abilities to account for processes with long memory or with highly disparate time scales. We compare the ability of vanilla and extended long short term memory networks (LSTMs) to predict asset price volatility, known to have a long memory. Generally, the number of epochs needed to train extended LSTMs is divided by two, while the variation of validation and test losses among models with the same hyperparameters is much smaller. We also show that the model with the smallest validation loss systemically outperforms rough volatility predictions by about 20% when trained and tested on a dataset with multiple time series. ...

August 4, 2023 · 2 min · Research Team

Effects of Daily News Sentiment on Stock Price Forecasting

Effects of Daily News Sentiment on Stock Price Forecasting ArXiv ID: 2308.08549 “View on arXiv” Authors: Unknown Abstract Predicting future prices of a stock is an arduous task to perform. However, incorporating additional elements can significantly improve our predictions, rather than relying solely on a stock’s historical price data to forecast its future price. Studies have demonstrated that investor sentiment, which is impacted by daily news about the company, can have a significant impact on stock price swings. There are numerous sources from which we can get this information, but they are cluttered with a lot of noise, making it difficult to accurately extract the sentiments from them. Hence the focus of our research is to design an efficient system to capture the sentiments from the news about the NITY50 stocks and investigate how much the financial news sentiment of these stocks are affecting their prices over a period of time. This paper presents a robust data collection and preprocessing framework to create a news database for a timeline of around 3.7 years, consisting of almost half a million news articles. We also capture the stock price information for this timeline and create multiple time series data, that include the sentiment scores from various sections of the article, calculated using different sentiment libraries. Based on this, we fit several LSTM models to forecast the stock prices, with and without using the sentiment scores as features and compare their performances. ...

August 2, 2023 · 2 min · Research Team