false

The impact of economic policies on housing prices. Approximations and predictions in the UK, the US, France, and Switzerland from the 1980s to today

The impact of economic policies on housing prices. Approximations and predictions in the UK, the US, France, and Switzerland from the 1980s to today ArXiv ID: 2505.09620 “View on arXiv” Authors: Unknown Abstract I show that house prices can be modeled using machine learning (kNN and tree-bagging) and a small dataset composed of macro-economic factors (MEF), including an inflation metric (CPI), US treasury rates (10-yr), Gross Domestic Product (GDP), and portfolio size of central banks (ECB, FED). This set of parameters covers all the parties involved in a transaction (buyer, seller, and financing facility) while ignoring the intrinsic properties of each asset and encompassing local (inflation) and liquidity issues that may impede each transaction composing a market. The model here takes the point of view of a real estate trader who is interested in both the financing and the price of the transaction. Machine Learning allows for the discrimination of two periods within the dataset. Unconventional policies of central banks may have allowed some institutional investors to arbitrage between real estate returns and other bond markets (sovereign and corporate). Finally, to assess the models’ relative performances, I performed various sensitivity tests, which tend to constrain the possibilities of each approach for each need. I also show that some models can predict the evolution of prices over the next 4 quarters with uncertainties that outperform existing index uncertainties. ...

April 10, 2025 · 2 min · Research Team

Gated recurrent neural network with TPE Bayesian optimization for enhancing stock index prediction accuracy

Gated recurrent neural network with TPE Bayesian optimization for enhancing stock index prediction accuracy ArXiv ID: 2406.02604 “View on arXiv” Authors: Unknown Abstract The recent advancement of deep learning architectures, neural networks, and the combination of abundant financial data and powerful computers are transforming finance, leading us to develop an advanced method for predicting future stock prices. However, the accessibility of investment and trading at everyone’s fingertips made the stock markets increasingly intricate and prone to volatility. The increased complexity and volatility of the stock market have driven demand for more models, which would effectively capture high volatility and non-linear behavior of the different stock prices. This study explored gated recurrent neural network (GRNN) algorithms such as LSTM (long short-term memory), GRU (gated recurrent unit), and hybrid models like GRU-LSTM, LSTM-GRU, with Tree-structured Parzen Estimator (TPE) Bayesian optimization for hyperparameter optimization (TPE-GRNN). The aim is to improve the prediction accuracy of the next day’s closing price of the NIFTY 50 index, a prominent Indian stock market index, using TPE-GRNN. A combination of eight influential factors is carefully chosen from fundamental stock data, technical indicators, crude oil price, and macroeconomic data to train the models for capturing the changes in the price of the index with the factors of the broader economy. Single-layer and multi-layer TPE-GRNN models have been developed. The models’ performance is evaluated using standard matrices like R2, MAPE, and RMSE. The analysis of models’ performance reveals the impact of feature selection and hyperparameter optimization (HPO) in enhancing stock index price prediction accuracy. The results show that the MAPE of our proposed TPE-LSTM method is the lowest (best) with respect to all the previous models for stock index price prediction. ...

June 2, 2024 · 2 min · Research Team