false

The Shape of Markets: Machine learning modeling and Prediction Using 2-Manifold Geometries

The Shape of Markets: Machine learning modeling and Prediction Using 2-Manifold Geometries ArXiv ID: 2511.05030 “View on arXiv” Authors: Panagiotis G. Papaioannou, Athanassios N. Yannacopoulos Abstract We introduce a Geometry Informed Model for financial forecasting by embedding high dimensional market data onto constant curvature 2manifolds. Guided by the uniformization theorem, we model market dynamics as Brownian motion on spherical S2, Euclidean R2, and hyperbolic H2 geometries. We further include the torus T, a compact, flat manifold admissible as a quotient space of the Euclidean plane anticipating its relevance for capturing cyclical dynamics. Manifold learning techniques infer the latent curvature from financial data, revealing the torus as the best performing geometry. We interpret this result through a macroeconomic lens, the torus circular dimensions align with endogenous cycles in output, interest rates, and inflation described by IS LM theory. Our findings demonstrate the value of integrating differential geometry with data-driven inference for financial modeling. ...

November 7, 2025 · 2 min · Research Team

Geometric Deep Learning for Realized Covariance Matrix Forecasting

Geometric Deep Learning for Realized Covariance Matrix Forecasting ArXiv ID: 2412.09517 “View on arXiv” Authors: Unknown Abstract Traditional methods employed in matrix volatility forecasting often overlook the inherent Riemannian manifold structure of symmetric positive definite matrices, treating them as elements of Euclidean space, which can lead to suboptimal predictive performance. Moreover, they often struggle to handle high-dimensional matrices. In this paper, we propose a novel approach for forecasting realized covariance matrices of asset returns using a Riemannian-geometry-aware deep learning framework. In this way, we account for the geometric properties of the covariance matrices, including possible non-linear dynamics and efficient handling of high-dimensionality. Moreover, building upon a Fréchet sample mean of realized covariance matrices, we are able to extend the HAR model to the matrix-variate. We demonstrate the efficacy of our approach using daily realized covariance matrices for the 50 most capitalized companies in the S&P 500 index, showing that our method outperforms traditional approaches in terms of predictive accuracy. ...

December 12, 2024 · 2 min · Research Team

Tasks Makyth Models: Machine Learning Assisted Surrogates for Tipping Points

Tasks Makyth Models: Machine Learning Assisted Surrogates for Tipping Points ArXiv ID: 2309.14334 “View on arXiv” Authors: Unknown Abstract We present a machine learning (ML)-assisted framework bridging manifold learning, neural networks, Gaussian processes, and Equation-Free multiscale modeling, for (a) detecting tipping points in the emergent behavior of complex systems, and (b) characterizing probabilities of rare events (here, catastrophic shifts) near them. Our illustrative example is an event-driven, stochastic agent-based model (ABM) describing the mimetic behavior of traders in a simple financial market. Given high-dimensional spatiotemporal data – generated by the stochastic ABM – we construct reduced-order models for the emergent dynamics at different scales: (a) mesoscopic Integro-Partial Differential Equations (IPDEs); and (b) mean-field-type Stochastic Differential Equations (SDEs) embedded in a low-dimensional latent space, targeted to the neighborhood of the tipping point. We contrast the uses of the different models and the effort involved in learning them. ...

September 25, 2023 · 2 min · Research Team