false

Market-Based Variance of Market Portfolio and of Entire Market

Market-Based Variance of Market Portfolio and of Entire Market ArXiv ID: 2510.13790 “View on arXiv” Authors: Victor Olkhov Abstract We present the unified market-based description of returns and variances of the trades with shares of a particular security, of the trades with shares of all securities in the market, and of the trades with the market portfolio. We consider the investor who doesn’t trade the shares of his portfolio he collected at time t0 in the past. The investor observes the time series of the current trades with all securities made in the market during the averaging interval. The investor may convert these time series into the time series that model the trades with all securities as the trades with a single security and into the time series that model the trades with the market portfolio as the trades with a single security. That establishes the same description of the returns and variances of the trades with a single security, the trades with all securities in the market, and the market portfolio. We show that the market-based variance, which accounts for the impact of random change of the volumes of consecutive trades with securities, takes the form of Markowitz’s (1952) portfolio variance if the volumes of consecutive trades with all market securities are assumed constant. That highlights that Markowitz’s (1952) variance ignores the effects of random volumes of consecutive trades. We compare the market-based variances of the market portfolio and of the trades with all market securities, consider the importance of the duration of the averaging interval, and explain the economic obstacles that limit the accuracy of the predictions of the returns and variances at best by Gaussian distributions. The same methods describe the returns and variances of any portfolio and the trades with its securities. ...

October 15, 2025 · 3 min · Research Team

Markowitz Variance May Vastly Undervalue or Overestimate Portfolio Variance and Risks

Markowitz Variance May Vastly Undervalue or Overestimate Portfolio Variance and Risks ArXiv ID: 2507.21824 “View on arXiv” Authors: Victor Olkhov Abstract We consider the investor who doesn’t trade shares of his portfolio. The investor only observes the current trades made in the market with his securities to estimate the current return, variance, and risks of his unchanged portfolio. We show how the time series of consecutive trades made in the market with the securities of the portfolio can determine the time series that model the trades with the portfolio as with a single security. That establishes the equal description of the market-based variance of the securities and of the portfolio composed of these securities that account for the fluctuations of the volumes of the consecutive trades. We show that Markowitz’s (1952) variance describes only the approximation when all volumes of the consecutive trades with securities are assumed constant. The market-based variance depends on the coefficient of variation of fluctuations of volumes of trades. To emphasize this dependence and to estimate possible deviation from Markowitz variance, we derive the Taylor series of the market-based variance up to the 2nd term by the coefficient of variation, taking Markowitz variance as a zero approximation. We consider three limiting cases with low and high fluctuations of the portfolio returns, and with a zero covariance of trade values and volumes and show that the impact of the coefficient of variation of trade volume fluctuations can cause Markowitz’s assessment to highly undervalue or overestimate the market-based variance of the portfolio. Incorrect assessments of the variances of securities and of the portfolio cause wrong risk estimates, disturb optimal portfolio selection, and result in unexpected losses. The major investors, portfolio managers, and developers of macroeconomic models like BlackRock, JP Morgan, and the U.S. Fed should use market-based variance to adjust their predictions to the randomness of market trades. ...

July 29, 2025 · 3 min · Research Team