false

Optimal Benchmark Design under Costly Manipulation

Optimal Benchmark Design under Costly Manipulation ArXiv ID: 2506.22142 “View on arXiv” Authors: Ángel Hernando-Veciana Abstract Price benchmarks are used to incorporate market price trends into contracts, but their use can create opportunities for manipulation by parties involved in the contract. This paper examines this issue using a realistic and tractable model inspired by smart contracts on blockchains like Ethereum. In our model, manipulation costs depend on two factors: the magnitude of adjustments to individual prices (variable costs) and the number of prices adjusted (fixed costs). We find that a weighted mean is the optimal benchmark when fixed costs are negligible, while the median is optimal when variable costs are negligible. In cases where both fixed and variable costs are significant, the optimal benchmark can be implemented as a trimmed mean, with the degree of trimming increasing as fixed costs become more important relative to variable costs. Furthermore, we show that the optimal weights for a mean-based benchmark are proportional to the marginal manipulation costs, whereas the median remains optimal without weighting, even when fixed costs differ across prices. ...

June 27, 2025 · 2 min · Research Team

Enhancing Meme Token Market Transparency: A Multi-Dimensional Entity-Linked Address Analysis for Liquidity Risk Evaluation

Enhancing Meme Token Market Transparency: A Multi-Dimensional Entity-Linked Address Analysis for Liquidity Risk Evaluation ArXiv ID: 2506.05359 “View on arXiv” Authors: Qiangqiang Liu, Qian Huang, Frank Fan, Haishan Wu, Xueyan Tang Abstract Meme tokens represent a distinctive asset class within the cryptocurrency ecosystem, characterized by high community engagement, significant market volatility, and heightened vulnerability to market manipulation. This paper introduces an innovative approach to assessing liquidity risk in meme token markets using entity-linked address identification techniques. We propose a multi-dimensional method integrating fund flow analysis, behavioral similarity, and anomalous transaction detection to identify related addresses. We develop a comprehensive set of liquidity risk indicators tailored for meme tokens, covering token distribution, trading activity, and liquidity metrics. Empirical analysis of tokens like BabyBonk, NMT, and BonkFork validates our approach, revealing significant disparities between apparent and actual liquidity in meme token markets. The findings of this study provide significant empirical evidence for market participants and regulatory authorities, laying a theoretical foundation for building a more transparent and robust meme token ecosystem. ...

May 22, 2025 · 2 min · Research Team

Learning the Spoofability of Limit Order Books With Interpretable Probabilistic Neural Networks

Learning the Spoofability of Limit Order Books With Interpretable Probabilistic Neural Networks ArXiv ID: 2504.15908 “View on arXiv” Authors: Unknown Abstract This paper investigates real-time detection of spoofing activity in limit order books, focusing on cryptocurrency centralized exchanges. We first introduce novel order flow variables based on multi-scale Hawkes processes that account both for the size and placement distance from current best prices of new limit orders. Using a Level-3 data set, we train a neural network model to predict the conditional probability distribution of mid price movements based on these features. Our empirical analysis highlights the critical role of the posting distance of limit orders in the price formation process, showing that spoofing detection models that do not take the posting distance into account are inadequate to describe the data. Next, we propose a spoofing detection framework based on the probabilistic market manipulation gain of a spoofing agent and use the previously trained neural network to compute the expected gain. Running this algorithm on all submitted limit orders in the period 2024-12-04 to 2024-12-07, we find that 31% of large orders could spoof the market. Because of its simple neuronal architecture, our model can be run in real time. This work contributes to enhancing market integrity by providing a robust tool for monitoring and mitigating spoofing in both cryptocurrency exchanges and traditional financial markets. ...

April 22, 2025 · 2 min · Research Team

Microstructure and Manipulation: Quantifying Pump-and-Dump Dynamics in Cryptocurrency Markets

Microstructure and Manipulation: Quantifying Pump-and-Dump Dynamics in Cryptocurrency Markets ArXiv ID: 2504.15790 “View on arXiv” Authors: Unknown Abstract Building on our prior threshold-based analysis of six months of Poloniex trading data, we have extended both the temporal span and granularity of our study by incorporating minute-level OHLCV records for 1021 tokens around each confirmed pump-and-dump event. First, we algorithmically identify the accumulation phase, marking the initial and final insider volume spikes, and observe that 70% of pre-event volume transacts within one hour of the pump announcement. Second, we compute conservative lower bounds on insider profits under both a single-point liquidation at 70% of peak and a tranche-based strategy (selling 20% at 50%, 30% at 60%, and 50% at 80% of peak), yielding median returns above 100% and upper-quartile returns exceeding 2000%. Third, by unfolding the full pump structure and integrating social-media verification (e.g., Telegram announcements), we confirm numerous additional events that eluded our initial model. We also categorize schemes into “pre-accumulation” versus “on-the-spot” archetypes-insights that sharpen detection algorithms, inform risk assessments, and underpin actionable strategies for real-time market-integrity enforcement. ...

April 22, 2025 · 2 min · Research Team

A Midsummer Meme's Dream: Investigating Market Manipulations in the Meme Coin Ecosystem

A Midsummer Meme’s Dream: Investigating Market Manipulations in the Meme Coin Ecosystem ArXiv ID: 2507.01963 “View on arXiv” Authors: Unknown Abstract From viral jokes to a billion-dollar phenomenon, meme coins have become one of the most popular segments in cryptocurrency markets. Unlike utility-focused crypto assets like Bitcoin, meme coins derive value primarily from community sentiment, making them vulnerable to manipulation. This study presents an unprecedented cross-chain analysis of the meme coin ecosystem, examining 34,988 tokens across Ethereum, BNB Smart Chain, Solana, and Base. We characterize their tokenomics and track their growth in a three-month longitudinal analysis. We discover that among high-return tokens (>100%), an alarming 82.8% show evidence of artificial growth strategies designed to create a misleading appearance of market interest. These include wash trading and a new form of manipulation we define as Liquidity Pool-Based Price Inflation (LPI), where small strategic purchases trigger dramatic price increases. We find that profit extraction schemes, such as pump and dumps and rug pulls, typically follow initial manipulations like wash trading or LPI, indicating how early manipulations create the foundation for later exploitation. We quantify the economic impact of these schemes, identifying over 17,000 victimized addresses with realized losses exceeding $9.3 million. These findings reveal that combined manipulations are widespread among high-performing meme coins, suggesting that their dramatic gains are often driven by coordinated efforts rather than natural market dynamics. ...

April 16, 2025 · 2 min · Research Team

Perseus: Tracing the Masterminds Behind Cryptocurrency Pump-and-Dump Schemes

\textsc{“Perseus”}: Tracing the Masterminds Behind Cryptocurrency Pump-and-Dump Schemes ArXiv ID: 2503.01686 “View on arXiv” Authors: Unknown Abstract Masterminds are entities organizing, coordinating, and orchestrating cryptocurrency pump-and-dump schemes, a form of trade-based manipulation undermining market integrity and causing financial losses for unwitting investors. Previous research detects pump-and-dump activities in the market, predicts the target cryptocurrency, and examines investors and \ac{“osn”} entities. However, these solutions do not address the root cause of the problem. There is a critical gap in identifying and tracing the masterminds involved in these schemes. In this research, we develop a detection system \textsc{“Perseus”}, which collects real-time data from the \acs{“osn”} and cryptocurrency markets. \textsc{“Perseus”} then constructs temporal attributed graphs that preserve the direction of information diffusion and the structure of the community while leveraging \ac{“gnn”} to identify the masterminds behind pump-and-dump activities. Our design of \textsc{“Perseus”} leads to higher F1 scores and precision than the \ac{“sota”} fraud detection method, achieving fast training and inferring speeds. Deployed in the real world from February 16 to October 9 2024, \textsc{“Perseus”} successfully detects $438$ masterminds who are efficient in the pump-and-dump information diffusion networks. \textsc{“Perseus”} provides regulators with an explanation of the risks of masterminds and oversight capabilities to mitigate the pump-and-dump schemes of cryptocurrency. ...

March 3, 2025 · 2 min · Research Team

Detecting Crypto Pump-and-Dump Schemes: A Thresholding-Based Approach to Handling Market Noise

Detecting Crypto Pump-and-Dump Schemes: A Thresholding-Based Approach to Handling Market Noise ArXiv ID: 2503.08692 “View on arXiv” Authors: Unknown Abstract We propose a simple yet robust unsupervised model to detect pump-and-dump events on tokens listed on the Poloniex Exchange platform. By combining threshold-based criteria with exponentially weighted moving averages (EWMA) and volatility measures, our approach effectively distinguishes genuine anomalies from minor trading fluctuations, even for tokens with low liquidity and prolonged inactivity. These characteristics present a unique challenge, as standard anomaly-detection methods often over-flag negligible volume spikes. Our framework overcomes this issue by tailoring both price and volume thresholds to the specific trading patterns observed, resulting in a model that balances high true-positive detection with minimal noise. ...

February 27, 2025 · 2 min · Research Team

How Wash Traders Exploit Market Conditions in Cryptocurrency Markets

How Wash Traders Exploit Market Conditions in Cryptocurrency Markets ArXiv ID: 2411.08720 “View on arXiv” Authors: Unknown Abstract Wash trading, the practice of simultaneously placing buy and sell orders for the same asset to inflate trading volume, has been prevalent in cryptocurrency markets. This paper investigates whether wash traders in Bitcoin act deliberately to exploit market conditions and identifies the characteristics of such manipulative behavior. Using a unique dataset of 18 million transactions from Mt. Gox, once the largest Bitcoin exchange, I find that wash trading intensifies when legitimate trading volume is low and diminishes when it is high, indicating strategic timing to maximize impact in less liquid markets. The activity also exhibits spillover effects across platforms and decreases when trading volumes in other asset classes like stocks or gold rise, suggesting sensitivity to broader market dynamics. Additionally, wash traders exploit periods of heightened media attention and online rumors to amplify their influence, causing rapid but short-lived spikes in legitimate trading volume. Using an exogenous demand shock associated with illicit online marketplaces, I find that wash trading responds to contemporaneous events affecting Bitcoin demand. These results advance the understanding of manipulative practices in digital currency markets and have significant implications for regulators aiming to detect and prevent wash trading. ...

November 8, 2024 · 2 min · Research Team

Liquidity Jump, Liquidity Diffusion, and Crypto Wash Trading

Liquidity Jump, Liquidity Diffusion, and Crypto Wash Trading ArXiv ID: 2411.05803 “View on arXiv” Authors: Unknown Abstract We develop a new framework to detect wash trading in crypto assets through real-time liquidity fluctuation. We propose that short-term price jumps in crypto assets results from wash trading-induced liquidity fluctuation, and construct two complementary liquidity measures, liquidity jump (size of fluctuation) and liquidity diffusion (volatility of fluctuation), to capture the behavioral signature of wash trading. Using US stocks as a benchmark, we demonstrate that joint elevation in both liquidity metrics indicates wash trading in crypto assets. A simulated regulatory treatment that removes likely wash trades confirms this dynamic: it reduces liquidity diffusion significantly while leaving liquidity jump largely unaffected. These findings align with a theoretical model in which manipulative traders amplify both the level and variance of price pressure, whereas passive investors affect only the level. Our model offers practical tools for investors to assess market quality and for regulators to monitor manipulation risk on crypto exchanges without oversight. ...

October 28, 2024 · 2 min · Research Team

Strategic Collusion of LLM Agents: Market Division in Multi-Commodity Competitions

Strategic Collusion of LLM Agents: Market Division in Multi-Commodity Competitions ArXiv ID: 2410.00031 “View on arXiv” Authors: Unknown Abstract Machine-learning technologies are seeing increased deployment in real-world market scenarios. In this work, we explore the strategic behaviors of large language models (LLMs) when deployed as autonomous agents in multi-commodity markets, specifically within Cournot competition frameworks. We examine whether LLMs can independently engage in anti-competitive practices such as collusion or, more specifically, market division. Our findings demonstrate that LLMs can effectively monopolize specific commodities by dynamically adjusting their pricing and resource allocation strategies, thereby maximizing profitability without direct human input or explicit collusion commands. These results pose unique challenges and opportunities for businesses looking to integrate AI into strategic roles and for regulatory bodies tasked with maintaining fair and competitive markets. The study provides a foundation for further exploration into the ramifications of deferring high-stakes decisions to LLM-based agents. ...

September 19, 2024 · 2 min · Research Team