false

Detecting and Triaging Spoofing using Temporal Convolutional Networks

Detecting and Triaging Spoofing using Temporal Convolutional Networks ArXiv ID: 2403.13429 “View on arXiv” Authors: Unknown Abstract As algorithmic trading and electronic markets continue to transform the landscape of financial markets, detecting and deterring rogue agents to maintain a fair and efficient marketplace is crucial. The explosion of large datasets and the continually changing tricks of the trade make it difficult to adapt to new market conditions and detect bad actors. To that end, we propose a framework that can be adapted easily to various problems in the space of detecting market manipulation. Our approach entails initially employing a labelling algorithm which we use to create a training set to learn a weakly supervised model to identify potentially suspicious sequences of order book states. The main goal here is to learn a representation of the order book that can be used to easily compare future events. Subsequently, we posit the incorporation of expert assessment to scrutinize specific flagged order book states. In the event of an expert’s unavailability, recourse is taken to the application of a more complex algorithm on the identified suspicious order book states. We then conduct a similarity search between any new representation of the order book against the expert labelled representations to rank the results of the weak learner. We show some preliminary results that are promising to explore further in this direction ...

March 20, 2024 · 2 min · Research Team

Can AI Detect Wash Trading? Evidence from NFTs

Can AI Detect Wash Trading? Evidence from NFTs ArXiv ID: 2311.18717 “View on arXiv” Authors: Unknown Abstract Existing studies on crypto wash trading often use indirect statistical methods or leaked private data, both with inherent limitations. This paper leverages public on-chain NFT data for a more direct and granular estimation. Analyzing three major exchanges, we find that ~38% (30-40%) of trades and ~60% (25-95%) of traded value likely involve manipulation, with significant variation across exchanges. This direct evidence enables a critical reassessment of existing indirect methods, identifying roundedness-based regressions à la Cong et al. (2023) as most promising, though still error-prone in the NFT setting. To address this, we develop an AI-based estimator that integrates these regressions in a machine learning framework, significantly reducing both exchange- and trade-level estimation errors in NFT markets (and beyond). ...

November 30, 2023 · 2 min · Research Team

Gray-box Adversarial Attack of Deep Reinforcement Learning-based Trading Agents

Gray-box Adversarial Attack of Deep Reinforcement Learning-based Trading Agents ArXiv ID: 2309.14615 “View on arXiv” Authors: Unknown Abstract In recent years, deep reinforcement learning (Deep RL) has been successfully implemented as a smart agent in many systems such as complex games, self-driving cars, and chat-bots. One of the interesting use cases of Deep RL is its application as an automated stock trading agent. In general, any automated trading agent is prone to manipulations by adversaries in the trading environment. Thus studying their robustness is vital for their success in practice. However, typical mechanism to study RL robustness, which is based on white-box gradient-based adversarial sample generation techniques (like FGSM), is obsolete for this use case, since the models are protected behind secure international exchange APIs, such as NASDAQ. In this research, we demonstrate that a “gray-box” approach for attacking a Deep RL-based trading agent is possible by trading in the same stock market, with no extra access to the trading agent. In our proposed approach, an adversary agent uses a hybrid Deep Neural Network as its policy consisting of Convolutional layers and fully-connected layers. On average, over three simulated trading market configurations, the adversary policy proposed in this research is able to reduce the reward values by 214.17%, which results in reducing the potential profits of the baseline by 139.4%, ensemble method by 93.7%, and an automated trading software developed by our industrial partner by 85.5%, while consuming significantly less budget than the victims (427.77%, 187.16%, and 66.97%, respectively). ...

September 26, 2023 · 2 min · Research Team

Learning Not to Spoof

Learning Not to Spoof ArXiv ID: 2306.06087 “View on arXiv” Authors: Unknown Abstract As intelligent trading agents based on reinforcement learning (RL) gain prevalence, it becomes more important to ensure that RL agents obey laws, regulations, and human behavioral expectations. There is substantial literature concerning the aversion of obvious catastrophes like crashing a helicopter or bankrupting a trading account, but little around the avoidance of subtle non-normative behavior for which there are examples, but no programmable definition. Such behavior may violate legal or regulatory, rather than physical or monetary, constraints. In this article, I consider a series of experiments in which an intelligent stock trading agent maximizes profit but may also inadvertently learn to spoof the market in which it participates. I first inject a hand-coded spoofing agent to a multi-agent market simulation and learn to recognize spoofing activity sequences. Then I replace the hand-coded spoofing trader with a simple profit-maximizing RL agent and observe that it independently discovers spoofing as the optimal strategy. Finally, I introduce a method to incorporate the recognizer as normative guide, shaping the agent’s perceived rewards and altering its selected actions. The agent remains profitable while avoiding spoofing behaviors that would result in even higher profit. After presenting the empirical results, I conclude with some recommendations. The method should generalize to the reduction of any unwanted behavior for which a recognizer can be learned. ...

June 9, 2023 · 2 min · Research Team

The Role of Twitter in Cryptocurrency Pump-and-Dumps

The Role of Twitter in Cryptocurrency Pump-and-Dumps ArXiv ID: 2306.02148 “View on arXiv” Authors: Unknown Abstract We examine the influence of Twitter promotion on cryptocurrency pump-and-dump events. By analyzing abnormal returns, trading volume, and tweet activity, we uncover that Twitter effectively garners attention for pump-and-dump schemes, leading to notable effects on abnormal returns before the event. Our results indicate that investors relying on Twitter information exhibit delayed selling behavior during the post-dump phase, resulting in significant losses compared to other participants. These findings shed light on the pivotal role of Twitter promotion in cryptocurrency manipulation, offering valuable insights into participant behavior and market dynamics. ...

June 3, 2023 · 1 min · Research Team