false

A nonparametric test for rough volatility

A nonparametric test for rough volatility ArXiv ID: 2407.10659 “View on arXiv” Authors: Unknown Abstract We develop a nonparametric test for deciding whether volatility of an asset follows a standard semimartingale process, with paths of finite quadratic variation, or a rough process with paths of infinite quadratic variation. The test utilizes the fact that volatility is rough if and only if volatility increments are negatively autocorrelated at high frequencies. It is based on the sample autocovariance of increments of spot volatility estimates computed from high-frequency asset return data. By showing a feasible CLT for this statistic under the null hypothesis of semimartingale volatility paths, we construct a test with fixed asymptotic size and an asymptotic power equal to one. The test is derived under very general conditions for the data-generating process. In particular, it is robust to jumps with arbitrary activity and to the presence of market microstructure noise. In an application of the test to SPY high-frequency data, we find evidence for rough volatility. ...

July 15, 2024 · 2 min · Research Team

From Deep Filtering to Deep Econometrics

From Deep Filtering to Deep Econometrics ArXiv ID: 2311.06256 “View on arXiv” Authors: Unknown Abstract Calculating true volatility is an essential task for option pricing and risk management. However, it is made difficult by market microstructure noise. Particle filtering has been proposed to solve this problem as it favorable statistical properties, but relies on assumptions about underlying market dynamics. Machine learning methods have also been proposed but lack interpretability, and often lag in performance. In this paper we implement the SV-PF-RNN: a hybrid neural network and particle filter architecture. Our SV-PF-RNN is designed specifically with stochastic volatility estimation in mind. We then show that it can improve on the performance of a basic particle filter. ...

September 13, 2023 · 2 min · Research Team