false

Insider trading in discrete time Kyle games

Insider trading in discrete time Kyle games ArXiv ID: 2312.00904 “View on arXiv” Authors: Unknown Abstract We present a new discrete time version of Kyle’s (1985) classic model of insider trading, formulated as a generalised extensive form game. The model has three kinds of traders: an insider, random noise traders, and a market maker. The insider aims to exploit her informational advantage and maximise expected profits while the market maker observes the total order flow and sets prices accordingly. First, we show how the multi-period model with finitely many pure strategies can be reduced to a (static) social system in the sense of Debreu (1952) and prove the existence of a sequential Kyle equilibrium, following Kreps and Wilson (1982). This works for any probability distribution with finite support of the noise trader’s demand and the true value, and for any finite information flow of the insider. In contrast to Kyle (1985) with normal distributions, equilibria exist in general only in mixed strategies and not in pure strategies. In the single-period model we establish bounds for the insider’s strategy in equilibrium. Finally, we prove the existence of an equilibrium for the game with a continuum of actions, by considering an approximating sequence of games with finitely many actions. Because of the lack of compactness of the set of measurable price functions, standard infinite-dimensional fixed point theorems are not applicable. ...

December 1, 2023 · 2 min · Research Team

Adaptive Agents and Data Quality in Agent-Based Financial Markets

Adaptive Agents and Data Quality in Agent-Based Financial Markets ArXiv ID: 2311.15974 “View on arXiv” Authors: Unknown Abstract We present our Agent-Based Market Microstructure Simulation (ABMMS), an Agent-Based Financial Market (ABFM) that captures much of the complexity present in the US National Market System for equities (NMS). Agent-Based models are a natural choice for understanding financial markets. Financial markets feature a constrained action space that should simplify model creation, produce a wealth of data that should aid model validation, and a successful ABFM could strongly impact system design and policy development processes. Despite these advantages, ABFMs have largely remained an academic novelty. We hypothesize that two factors limit the usefulness of ABFMs. First, many ABFMs fail to capture relevant microstructure mechanisms, leading to differences in the mechanics of trading. Second, the simple agents that commonly populate ABFMs do not display the breadth of behaviors observed in human traders or the trading systems that they create. We investigate these issues through the development of ABMMS, which features a fragmented market structure, communication infrastructure with propagation delays, realistic auction mechanisms, and more. As a baseline, we populate ABMMS with simple trading agents and investigate properties of the generated data. We then compare the baseline with experimental conditions that explore the impacts of market topology or meta-reinforcement learning agents. The combination of detailed market mechanisms and adaptive agents leads to models whose generated data more accurately reproduce stylized facts observed in actual markets. These improvements increase the utility of ABFMs as tools to inform design and policy decisions. ...

November 27, 2023 · 2 min · Research Team

Multi-Label Topic Model for Financial Textual Data

Multi-Label Topic Model for Financial Textual Data ArXiv ID: 2311.07598 “View on arXiv” Authors: Unknown Abstract This paper presents a multi-label topic model for financial texts like ad-hoc announcements, 8-K filings, finance related news or annual reports. I train the model on a new financial multi-label database consisting of 3,044 German ad-hoc announcements that are labeled manually using 20 predefined, economically motivated topics. The best model achieves a macro F1 score of more than 85%. Translating the data results in an English version of the model with similar performance. As application of the model, I investigate differences in stock market reactions across topics. I find evidence for strong positive or negative market reactions for some topics, like announcements of new Large Scale Projects or Bankruptcy Filings, while I do not observe significant price effects for some other topics. Furthermore, in contrast to previous studies, the multi-label structure of the model allows to analyze the effects of co-occurring topics on stock market reactions. For many cases, the reaction to a specific topic depends heavily on the co-occurrence with other topics. For example, if allocated capital from a Seasoned Equity Offering (SEO) is used for restructuring a company in the course of a Bankruptcy Proceeding, the market reacts positively on average. However, if that capital is used for covering unexpected, additional costs from the development of new drugs, the SEO implies negative reactions on average. ...

November 10, 2023 · 2 min · Research Team

Theoretical Economics as Successive Approximations of Statistical Moments

Theoretical Economics as Successive Approximations of Statistical Moments ArXiv ID: 2310.05971 “View on arXiv” Authors: Unknown Abstract This paper studies the links between the descriptions of macroeconomic variables and statistical moments of market trade, price, and return. The randomness of market trade values and volumes during the averaging interval Δ results in the random properties of price and return. We describe how averages and volatilities of price and return depend on the averages, volatilities, and correlations of market trade values and volumes. The averages, volatilities, and correlations of market trade, price, and return can behave randomly during the long interval Δ2»Δ. To describe their statistical properties during the long interval Δ2, we introduce the secondary averaging procedure of trade, price, and return. We explain why, in the coming years, predictions of market-based probabilities of price and return will be limited by Gaussian distributions. We discuss the roots of the internal weakness of the commonly used hedging tool, Value-at-Risk, that cannot be solved and remains the source of additional risks and losses. One should consider theoretical economics as a set of successive approximations, each of which describes the next array of the n-th statistical moments of market trades, price, return, and macroeconomic variables, which are repeatedly averaged during the sequence of increasing time intervals. ...

September 28, 2023 · 2 min · Research Team

An Empirical Analysis on Financial Markets: Insights from the Application of Statistical Physics

An Empirical Analysis on Financial Markets: Insights from the Application of Statistical Physics ArXiv ID: 2308.14235 “View on arXiv” Authors: Unknown Abstract In this study, we introduce a physical model inspired by statistical physics for predicting price volatility and expected returns by leveraging Level 3 order book data. By drawing parallels between orders in the limit order book and particles in a physical system, we establish unique measures for the system’s kinetic energy and momentum as a way to comprehend and evaluate the state of limit order book. Our model goes beyond examining merely the top layers of the order book by introducing the concept of ‘active depth’, a computationally-efficient approach for identifying order book levels that have impact on price dynamics. We empirically demonstrate that our model outperforms the benchmarks of traditional approaches and machine learning algorithm. Our model provides a nuanced comprehension of market microstructure and produces more accurate forecasts on volatility and expected returns. By incorporating principles of statistical physics, this research offers valuable insights on understanding the behaviours of market participants and order book dynamics. ...

August 28, 2023 · 2 min · Research Team

To the Moon: Analyzing Collective Trading Events on the Wings of Sentiment Analysis

To the Moon: Analyzing Collective Trading Events on the Wings of Sentiment Analysis ArXiv ID: 2308.09968 “View on arXiv” Authors: Unknown Abstract This research investigates the growing trend of retail investors participating in certain stocks by organizing themselves on social media platforms, particularly Reddit. Previous studies have highlighted a notable association between Reddit activity and the volatility of affected stocks. This study seeks to expand the analysis to Twitter, which is among the most impactful social media platforms. To achieve this, we collected relevant tweets and analyzed their sentiment to explore the correlation between Twitter activity, sentiment, and stock volatility. The results reveal a significant relationship between Twitter activity and stock volatility but a weak link between tweet sentiment and stock performance. In general, Twitter activity and sentiment appear to play a less critical role in these events than Reddit activity. These findings offer new theoretical insights into the impact of social media platforms on stock market dynamics, and they may practically assist investors and regulators in comprehending these phenomena better. ...

August 19, 2023 · 2 min · Research Team

Quantitative statistical analysis of order-splitting behaviour of individual trading accounts in the Japanese stock market over nine years

Quantitative statistical analysis of order-splitting behaviour of individual trading accounts in the Japanese stock market over nine years ArXiv ID: 2308.01112 “View on arXiv” Authors: Unknown Abstract In this research, we focus on the order-splitting behavior. The order splitting is a trading strategy to execute their large potential metaorder into small pieces to reduce transaction cost. This strategic behavior is believed to be important because it is a promising candidate for the microscopic origin of the long-range correlation (LRC) in the persistent order flow. Indeed, in 2005, Lillo, Mike, and Farmer (LMF) introduced a microscopic model of the order-splitting traders to predict the asymptotic behavior of the LRC from the microscopic dynamics, even quantitatively. The plausibility of this scenario has been qualitatively investigated by Toth et al. 2015. However, no solid support has been presented yet on the quantitative prediction by the LMF model in the lack of large microscopic datasets. In this report, we have provided the first quantitative statistical analysis of the order-splitting behavior at the level of each trading account. We analyse a large dataset of the Tokyo stock exchange (TSE) market over nine years, including the account data of traders (called virtual servers). The virtual server is a unit of trading accounts in the TSE market, and we can effectively define the trader IDs by an appropriate preprocessing. We apply a strategy clustering to individual traders to identify the order-splitting traders and the random traders. For most of the stocks, we find that the metaorder length distribution obeys power laws with exponent $α$, such that $P(L)\propto L^{"-α-1"}$ with the metaorder length $L$. By analysing the sign correlation $C(τ)\propto τ^{"-γ"}$, we directly confirmed the LMF prediction $γ\approx α-1$. Furthermore, we discuss how to estimate the total number of the splitting traders only from public data via the ACF prefactor formula in the LMF model. Our work provides the first quantitative evidence of the LMF model. ...

August 2, 2023 · 3 min · Research Team

Equilibria and incentives for illiquid auction markets

Equilibria and incentives for illiquid auction markets ArXiv ID: 2307.15805 “View on arXiv” Authors: Unknown Abstract We study a toy two-player game for periodic double auction markets to generate liquidity. The game has imperfect information, which allows us to link market spreads with signal strength. We characterize Nash equilibria in cases with or without incentives from the exchange. This enables us to derive new insights about price formation and incentives design. We show in particular that without any incentives, the market is inefficient and does not lead to any trade between market participants. We however prove that quadratic fees indexed on each players half spread leads to a transaction and we propose a quantitative value for the optimal fees that the exchange has to propose in this model to generate liquidity. ...

July 28, 2023 · 2 min · Research Team

Is Kyle's equilibrium model stable?

Is Kyle’s equilibrium model stable? ArXiv ID: 2307.09392 “View on arXiv” Authors: Unknown Abstract In the dynamic discrete-time trading setting of Kyle (1985), we prove that Kyle’s equilibrium model is stable when there are one or two trading times. For three or more trading times, we prove that Kyle’s equilibrium is not stable. These theoretical results are proven to hold irrespectively of all Kyle’s input parameters. Keywords: Kyle’s model, market microstructure, equilibrium stability, dynamic trading, information asymmetry, Equities (Microstructure) ...

July 18, 2023 · 1 min · Research Team

Conditional Generators for Limit Order Book Environments: Explainability, Challenges, and Robustness

Conditional Generators for Limit Order Book Environments: Explainability, Challenges, and Robustness ArXiv ID: 2306.12806 “View on arXiv” Authors: Unknown Abstract Limit order books are a fundamental and widespread market mechanism. This paper investigates the use of conditional generative models for order book simulation. For developing a trading agent, this approach has drawn recent attention as an alternative to traditional backtesting due to its ability to react to the presence of the trading agent. Using a state-of-the-art CGAN (from Coletta et al. (2022)), we explore its dependence upon input features, which highlights both strengths and weaknesses. To do this, we use “adversarial attacks” on the model’s features and its mechanism. We then show how these insights can be used to improve the CGAN, both in terms of its realism and robustness. We finish by laying out a roadmap for future work. ...

June 22, 2023 · 2 min · Research Team