false

Push-response anomalies in high-frequency S&P 500 price series

Push-response anomalies in high-frequency S&P 500 price series ArXiv ID: 2511.06177 “View on arXiv” Authors: Dmitrii Vlasiuk, Mikhail Smirnov Abstract We test the hypothesis that consecutive intraday price changes in the most liquid U.S. equity ETF (SPY) are conditionally nonrandom. Using NBBO event-time data for about 1,500 regular trading days, we form for every lag L ordered pairs of a backward price increment (“push”) and a forward price increment (“response”), standardize them, and estimate the expected responses on a fine grid of push magnitudes. The resulting lag-by-magnitude maps reveal a persistent structural shift: for short lags (1-5,000 ticks), expected responses cluster near zero across most push magnitudes, suggesting high short-term efficiency; beyond that range, pronounced tails emerge, indicating that larger historical pushes increasingly correlate with nonzero conditional responses. We also find that large negative pushes are followed by stronger positive responses than equally large positive pushes, consistent with asymmetric liquidity replenishment after sell-side shocks. Decomposition into symmetric and antisymmetric components and the associated dominance curves confirm that short-horizon efficiency is restored only partially. The evidence points to an intraday, lag-resolved anomaly that is invisible in unconditional returns and that can be used to define tradable pockets and risk controls. ...

November 9, 2025 · 2 min · Research Team

ABIDES-MARL: A Multi-Agent Reinforcement Learning Environment for Endogenous Price Formation and Execution in a Limit Order Book

ABIDES-MARL: A Multi-Agent Reinforcement Learning Environment for Endogenous Price Formation and Execution in a Limit Order Book ArXiv ID: 2511.02016 “View on arXiv” Authors: Patrick Cheridito, Jean-Loup Dupret, Zhexin Wu Abstract We present ABIDES-MARL, a framework that combines a new multi-agent reinforcement learning (MARL) methodology with a new realistic limit-order-book (LOB) simulation system to study equilibrium behavior in complex financial market games. The system extends ABIDES-Gym by decoupling state collection from kernel interruption, enabling synchronized learning and decision-making for multiple adaptive agents while maintaining compatibility with standard RL libraries. It preserves key market features such as price-time priority and discrete tick sizes. Methodologically, we use MARL to approximate equilibrium-like behavior in multi-period trading games with a finite number of heterogeneous agents-an informed trader, a liquidity trader, noise traders, and competing market makers-all with individual price impacts. This setting bridges optimal execution and market microstructure by embedding the liquidity trader’s optimization problem within a strategic trading environment. We validate the approach by solving an extended Kyle model within the simulation system, recovering the gradual price discovery phenomenon. We then extend the analysis to a liquidity trader’s problem where market liquidity arises endogenously and show that, at equilibrium, execution strategies shape market-maker behavior and price dynamics. ABIDES-MARL provides a reproducible foundation for analyzing equilibrium and strategic adaptation in realistic markets and contributes toward building economically interpretable agentic AI systems for finance. ...

November 3, 2025 · 2 min · Research Team

Trade Execution Flow as the Underlying Source of Market Dynamics

Trade Execution Flow as the Underlying Source of Market Dynamics ArXiv ID: 2511.01471 “View on arXiv” Authors: Mikhail Gennadievich Belov, Victor Victorovich Dubov, Vadim Konstantinovich Ivanov, Alexander Yurievich Maslov, Olga Vladimirovna Proshina, Vladislav Gennadievich Malyshkin Abstract In this work, we demonstrate experimentally that the execution flow, $I = dV/dt$, is the fundamental driving force of market dynamics. We develop a numerical framework to calculate execution flow from sampled moments using the Radon-Nikodym derivative. A notable feature of this approach is its ability to automatically determine thresholds that can serve as actionable triggers. The technique also determines the characteristic time scale directly from the corresponding eigenproblem. The methodology has been validated on actual market data to support these findings. Additionally, we introduce a framework based on the Christoffel function spectrum, which is invariant under arbitrary non-degenerate linear transformations of input attributes and offers an alternative to traditional principal component analysis (PCA), which is limited to unitary invariance. ...

November 3, 2025 · 2 min · Research Team

RL-Exec: Impact-Aware Reinforcement Learning for Opportunistic Optimal Liquidation, Outperforms TWAP and a Book-Liquidity VWAP on BTC-USD Replays

RL-Exec: Impact-Aware Reinforcement Learning for Opportunistic Optimal Liquidation, Outperforms TWAP and a Book-Liquidity VWAP on BTC-USD Replays ArXiv ID: 2511.07434 “View on arXiv” Authors: Enzo Duflot, Stanislas Robineau Abstract We study opportunistic optimal liquidation over fixed deadlines on BTC-USD limit-order books (LOB). We present RL-Exec, a PPO agent trained on historical replays augmented with endogenous transient impact (resilience), partial fills, maker/taker fees, and latency. The policy observes depth-20 LOB features plus microstructure indicators and acts under a sell-only inventory constraint to reach a residual target. Evaluation follows a strict time split (train: Jan-2020; test: Feb-2020) and a per-day protocol: for each test day we run ten independent start times and aggregate to a single daily score, avoiding pseudo-replication. We compare the agent to (i) TWAP and (ii) a VWAP-like baseline allocating using opposite-side order-book liquidity (top-20 levels), both executed on identical timestamps and costs. Statistical inference uses one-sided Wilcoxon signed-rank tests on daily RL-baseline differences with Benjamini-Hochberg FDR correction and bootstrap confidence intervals. On the Feb-2020 test set, RL-Exec significantly outperforms both baselines and the gap increases with the execution horizon (+2-3 bps at 30 min, +7-8 bps at 60 min, +23 bps at 120 min). Code: github.com/Giafferri/RL-Exec ...

October 30, 2025 · 2 min · Research Team

Multifractality and its sources in the digital currency market

Multifractality and its sources in the digital currency market ArXiv ID: 2510.13785 “View on arXiv” Authors: Stanisław Drożdż, Robert Kluszczyński, Jarosław Kwapień, Marcin Wątorek Abstract Multifractality in time series analysis characterizes the presence of multiple scaling exponents, indicating heterogeneous temporal structures and complex dynamical behaviors beyond simple monofractal models. In the context of digital currency markets, multifractal properties arise due to the interplay of long-range temporal correlations and heavy-tailed distributions of returns, reflecting intricate market microstructure and trader interactions. Incorporating multifractal analysis into the modeling of cryptocurrency price dynamics enhances the understanding of market inefficiencies, may improve volatility forecasting and facilitate the detection of critical transitions or regime shifts. Based on the multifractal cross-correlation analysis (MFCCA) whose spacial case is the multifractal detrended fluctuation analysis (MFDFA), as the most commonly used practical tools for quantifying multifractality, in the present contribution a recently proposed method of disentangling sources of multifractality in time series was applied to the most representative instruments from the digital market. They include Bitcoin (BTC), Ethereum (ETH), decentralized exchanges (DEX) and non-fungible tokens (NFT). The results indicate the significant role of heavy tails in generating a broad multifractal spectrum. However, they also clearly demonstrate that the primary source of multifractality are temporal correlations in the series, and without them, multifractality fades out. It appears characteristic that these temporal correlations, to a large extent, do not depend on the thickness of the tails of the fluctuation distribution. These observations, made here in the context of the digital currency market, provide a further strong argument for the validity of the proposed methodology of disentangling sources of multifractality in time series. ...

October 15, 2025 · 3 min · Research Team

The Invisible Handshake: Tacit Collusion between Adaptive Market Agents

The Invisible Handshake: Tacit Collusion between Adaptive Market Agents ArXiv ID: 2510.15995 “View on arXiv” Authors: Luigi Foscari, Emanuele Guidotti, Nicolò Cesa-Bianchi, Tatjana Chavdarova, Alfio Ferrara Abstract We study the emergence of tacit collusion between adaptive trading agents in a stochastic market with endogenous price formation. Using a two-player repeated game between a market maker and a market taker, we characterize feasible and collusive strategy profiles that raise prices beyond competitive levels. We show that, when agents follow simple learning algorithms (e.g., gradient ascent) to maximize their own wealth, the resulting dynamics converge to collusive strategy profiles, even in highly liquid markets with small trade sizes. By highlighting how simple learning strategies naturally lead to tacit collusion, our results offer new insights into the dynamics of AI-driven markets. ...

October 14, 2025 · 2 min · Research Team

A Deterministic Limit Order Book Simulator with Hawkes-Driven Order Flow

A Deterministic Limit Order Book Simulator with Hawkes-Driven Order Flow ArXiv ID: 2510.08085 “View on arXiv” Authors: Sohaib El Karmi Abstract We present a reproducible research framework for market microstructure combining a deterministic C++ limit order book (LOB) simulator with stochastic order flow generated by multivariate marked Hawkes processes. The paper derives full stability and ergodicity proofs for both linear and nonlinear Hawkes models, implements time-rescaling and goodness-of-fit diagnostics, and calibrates exponential and power-law kernels on Binance BTCUSDT and LOBSTER AAPL datasets. Empirical results highlight the nearly-unstable subcritical regime as essential for reproducing realistic clustering in order flow. All code, datasets, and configuration files are publicly available at https://github.com/sohaibelkarmi/High-Frequency-Trading-Simulator ...

October 9, 2025 · 2 min · Research Team

Do Mutual Funds Make Active and Skilled Liquidity Choices in Portfolio Management? Evidence from India

Do Mutual Funds Make Active and Skilled Liquidity Choices in Portfolio Management? Evidence from India ArXiv ID: 2510.02741 “View on arXiv” Authors: Pankaj K Agarwal, H K Pradhan, Konark Saxena Abstract This study examines active liquidity management by Indian open-ended equity mutual funds. We find that fund managers respond to inflows by increasing cash holdings, which are later used to purchase less-liquid stocks at favourable valuations. Funds with less liquid portfolios tend to maintain larger cash reserves to manage flows. Funds that make active liquidity choices yield statistically and economically significant gross and net returns. The performance differences between funds with varying activeness in altering liquidity highlight the importance of active liquidity management in markets with substantial cross-sectional liquidity differences such as India. ...

October 3, 2025 · 2 min · Research Team

Forecasting Liquidity Withdraw with Machine Learning Models

Forecasting Liquidity Withdraw with Machine Learning Models ArXiv ID: 2509.22985 “View on arXiv” Authors: Haochuan, Wang Abstract Liquidity withdrawal is a critical indicator of market fragility. In this project, I test a framework for forecasting liquidity withdrawal at the individual-stock level, ranging from less liquid stocks to highly liquid large-cap tickers, and evaluate the relative performance of competing model classes in predicting short-horizon order book stress. We introduce the Liquidity Withdrawal Index (LWI) – defined as the ratio of order cancellations to the sum of standing depth and new additions at the best quotes – as a bounded, interpretable measure of transient liquidity removal. Using Nasdaq market-by-order (MBO) data, we compare a spectrum of approaches: linear benchmarks (AR, HAR), and non-linear tree ensembles (XGBoost), across horizons ranging from 250,ms to 5,s. Beyond predictive accuracy, our results provide insights into order placement and cancellation dynamics, identify regimes where linear versus non-linear signals dominate, and highlight how early-warning indicators of liquidity withdrawal can inform both market surveillance and execution. ...

September 26, 2025 · 2 min · Research Team

Ultrafast Extreme Events: Empirical Analysis of Mechanisms and Recovery in a Historical Perspective

Ultrafast Extreme Events: Empirical Analysis of Mechanisms and Recovery in a Historical Perspective ArXiv ID: 2509.10376 “View on arXiv” Authors: Luca Henrichs, Anton J. Heckens, Thomas Guhr Abstract To understand the emergence of Ultrafast Extreme Events (UEEs), the influence of algorithmic trading or high-frequency traders is of major interest as they make it extremely difficult to intervene and to stabilize financial markets. In an empirical analysis, we compare various characteristics of UEEs over different years for the US stock market to assess the possible non-stationarity of the effects. We show that liquidity plays a dominant role in the emergence of UEEs and find a general pattern in their dynamics. We also empirically investigate the after-effects in view of the recovery rate. We find common patterns for different years. We explain changes in the recovery rate by varying market sentiments for the different years. ...

September 12, 2025 · 2 min · Research Team