false

Beyond Trend Following: Deep Learning for Market Trend Prediction

Beyond Trend Following: Deep Learning for Market Trend Prediction ArXiv ID: 2407.13685 “View on arXiv” Authors: Unknown Abstract Trend following and momentum investing are common strategies employed by asset managers. Even though they can be helpful in the proper situations, they are limited in the sense that they work just by looking at past, as if we were driving with our focus on the rearview mirror. In this paper, we advocate for the use of Artificial Intelligence and Machine Learning techniques to predict future market trends. These predictions, when done properly, can improve the performance of asset managers by increasing returns and reducing drawdowns. ...

June 10, 2024 · 2 min · Research Team

Application and practice of AI technology in quantitative investment

Application and practice of AI technology in quantitative investment ArXiv ID: 2404.18184 “View on arXiv” Authors: Unknown Abstract With the continuous development of artificial intelligence technology, using machine learning technology to predict market trends may no longer be out of reach. In recent years, artificial intelligence has become a research hotspot in the academic circle,and it has been widely used in image recognition, natural language processing and other fields, and also has a huge impact on the field of quantitative investment. As an investment method to obtain stable returns through data analysis, model construction and program trading, quantitative investment is deeply loved by financial institutions and investors. At the same time, as an important application field of quantitative investment, the quantitative investment strategy based on artificial intelligence technology arises at the historic moment.How to apply artificial intelligence to quantitative investment, so as to better achieve profit and risk control, has also become the focus and difficulty of the research. From a global perspective, inflation in the US and the Federal Reserve are the concerns of investors, which to some extent affects the direction of global assets, including the Chinese stock market. This paper studies the application of AI technology, quantitative investment, and AI technology in quantitative investment, aiming to provide investors with auxiliary decision-making, reduce the difficulty of investment analysis, and help them to obtain higher returns. ...

April 28, 2024 · 2 min · Research Team

Developing A Multi-Agent and Self-Adaptive Framework with Deep Reinforcement Learning for Dynamic Portfolio Risk Management

Developing A Multi-Agent and Self-Adaptive Framework with Deep Reinforcement Learning for Dynamic Portfolio Risk Management ArXiv ID: 2402.00515 “View on arXiv” Authors: Unknown Abstract Deep or reinforcement learning (RL) approaches have been adapted as reactive agents to quickly learn and respond with new investment strategies for portfolio management under the highly turbulent financial market environments in recent years. In many cases, due to the very complex correlations among various financial sectors, and the fluctuating trends in different financial markets, a deep or reinforcement learning based agent can be biased in maximising the total returns of the newly formulated investment portfolio while neglecting its potential risks under the turmoil of various market conditions in the global or regional sectors. Accordingly, a multi-agent and self-adaptive framework namely the MASA is proposed in which a sophisticated multi-agent reinforcement learning (RL) approach is adopted through two cooperating and reactive agents to carefully and dynamically balance the trade-off between the overall portfolio returns and their potential risks. Besides, a very flexible and proactive agent as the market observer is integrated into the MASA framework to provide some additional information on the estimated market trends as valuable feedbacks for multi-agent RL approach to quickly adapt to the ever-changing market conditions. The obtained empirical results clearly reveal the potential strengths of our proposed MASA framework based on the multi-agent RL approach against many well-known RL-based approaches on the challenging data sets of the CSI 300, Dow Jones Industrial Average and S&P 500 indexes over the past 10 years. More importantly, our proposed MASA framework shed lights on many possible directions for future investigation. ...

February 1, 2024 · 2 min · Research Team