false

Deep Reinforcement Learning for Optimal Asset Allocation Using DDPG with TiDE

Deep Reinforcement Learning for Optimal Asset Allocation Using DDPG with TiDE ArXiv ID: 2508.20103 “View on arXiv” Authors: Rongwei Liu, Jin Zheng, John Cartlidge Abstract The optimal asset allocation between risky and risk-free assets is a persistent challenge due to the inherent volatility in financial markets. Conventional methods rely on strict distributional assumptions or non-additive reward ratios, which limit their robustness and applicability to investment goals. To overcome these constraints, this study formulates the optimal two-asset allocation problem as a sequential decision-making task within a Markov Decision Process (MDP). This framework enables the application of reinforcement learning (RL) mechanisms to develop dynamic policies based on simulated financial scenarios, regardless of prerequisites. We use the Kelly criterion to balance immediate reward signals against long-term investment objectives, and we take the novel step of integrating the Time-series Dense Encoder (TiDE) into the Deep Deterministic Policy Gradient (DDPG) RL framework for continuous decision-making. We compare DDPG-TiDE with a simple discrete-action Q-learning RL framework and a passive buy-and-hold investment strategy. Empirical results show that DDPG-TiDE outperforms Q-learning and generates higher risk adjusted returns than buy-and-hold. These findings suggest that tackling the optimal asset allocation problem by integrating TiDE within a DDPG reinforcement learning framework is a fruitful avenue for further exploration. ...

August 12, 2025 · 2 min · Research Team

Reinforcement Learning Methods for the Stochastic Optimal Control of an Industrial Power-to-Heat System

Reinforcement Learning Methods for the Stochastic Optimal Control of an Industrial Power-to-Heat System ArXiv ID: 2411.02211 “View on arXiv” Authors: Unknown Abstract The optimal control of sustainable energy supply systems, including renewable energies and energy storage, takes a central role in the decarbonization of industrial systems. However, the use of fluctuating renewable energies leads to fluctuations in energy generation and requires a suitable control strategy for the complex systems in order to ensure energy supply. In this paper, we consider an electrified power-to-heat system which is designed to supply heat in form of superheated steam for industrial processes. The system consists of a high-temperature heat pump for heat supply, a wind turbine for power generation, a sensible thermal energy storage for storing excess heat and a steam generator for providing steam. If the system’s energy demand cannot be covered by electricity from the wind turbine, additional electricity must be purchased from the power grid. For this system, we investigate the cost-optimal operation aiming to minimize the electricity cost from the grid by a suitable system control depending on the available wind power and the amount of stored thermal energy. This is a decision making problem under uncertainties about the future prices for electricity from the grid and the future generation of wind power. The resulting stochastic optimal control problem is treated as finite-horizon Markov decision process for a multi-dimensional controlled state process. We first consider the classical backward recursion technique for solving the associated dynamic programming equation for the value function and compute the optimal decision rule. Since that approach suffers from the curse of dimensionality we also apply reinforcement learning techniques, namely Q-learning, that are able to provide a good approximate solution to the optimization problem within reasonable time. ...

November 4, 2024 · 2 min · Research Team