false

American option pricing using generalised stochastic hybrid systems

American option pricing using generalised stochastic hybrid systems ArXiv ID: 2409.07477 “View on arXiv” Authors: Unknown Abstract This paper presents a novel approach to pricing American options using piecewise diffusion Markov processes (PDifMPs), a type of generalised stochastic hybrid system that integrates continuous dynamics with discrete jump processes. Standard models often rely on constant drift and volatility assumptions, which limits their ability to accurately capture the complex and erratic nature of financial markets. By incorporating PDifMPs, our method accounts for sudden market fluctuations, providing a more realistic model of asset price dynamics. We benchmark our approach with the Longstaff-Schwartz algorithm, both in its original form and modified to include PDifMP asset price trajectories. Numerical simulations demonstrate that our PDifMP-based method not only provides a more accurate reflection of market behaviour but also offers practical advantages in terms of computational efficiency. The results suggest that PDifMPs can significantly improve the predictive accuracy of American options pricing by more closely aligning with the stochastic volatility and jumps observed in real financial markets. ...

August 29, 2024 · 2 min · Research Team

A General Framework for Importance Sampling with Markov Random Walks

A General Framework for Importance Sampling with Markov Random Walks ArXiv ID: 2311.12330 “View on arXiv” Authors: Unknown Abstract Although stochastic models driven by latent Markov processes are widely used, the classical importance sampling methods based on the exponential tilting for these models suffers from the difficulties in computing the eigenvalues and associated eigenfunctions and the plausibility of the indirect asymptotic large deviation regime for the variance of the estimator. We propose a general importance sampling framework that twists the observable and latent processes separately using a link function that directly minimizes the estimator’s variance. An optimal choice of the link function is chosen within the locally asymptotically normal family. We show the logarithmic efficiency of the proposed estimator. As applications, we estimate an overflow probability under a pandemic model and the CoVaR, a measurement of the co-dependent financial systemic risk. Both applications are beyond the scope of traditional importance sampling methods due to their nonlinear features. ...

November 21, 2023 · 2 min · Research Team