false

Downside Risk Reduction Using Regime-Switching Signals: A Statistical Jump Model Approach

Downside Risk Reduction Using Regime-Switching Signals: A Statistical Jump Model Approach ArXiv ID: 2402.05272 “View on arXiv” Authors: Unknown Abstract This article investigates a regime-switching investment strategy aimed at mitigating downside risk by reducing market exposure during anticipated unfavorable market regimes. We highlight the statistical jump model (JM) for market regime identification, a recently developed robust model that distinguishes itself from traditional Markov-switching models by enhancing regime persistence through a jump penalty applied at each state transition. Our JM utilizes a feature set comprising risk and return measures derived solely from the return series, with the optimal jump penalty selected through a time-series cross-validation method that directly optimizes strategy performance. Our empirical analysis evaluates the realistic out-of-sample performance of various strategies on major equity indices from the US, Germany, and Japan from 1990 to 2023, in the presence of transaction costs and trading delays. The results demonstrate the consistent outperformance of the JM-guided strategy in reducing risk metrics such as volatility and maximum drawdown, and enhancing risk-adjusted returns like the Sharpe ratio, when compared to both hidden Markov model-guided strategy and the buy-and-hold strategy. These findings underline the enhanced persistence, practicality, and versatility of strategies utilizing JMs for regime-switching signals. ...

February 7, 2024 · 2 min · Research Team

Modelling and Predicting the Conditional Variance of Bitcoin Daily Returns: Comparsion of Markov Switching GARCH and SV Models

Modelling and Predicting the Conditional Variance of Bitcoin Daily Returns: Comparsion of Markov Switching GARCH and SV Models ArXiv ID: 2401.03393 “View on arXiv” Authors: Unknown Abstract This paper introduces a unique and valuable research design aimed at analyzing Bitcoin price volatility. To achieve this, a range of models from the Markov Switching-GARCH and Stochastic Autoregressive Volatility (SARV) model classes are considered and their out-of-sample forecasting performance is thoroughly examined. The paper provides insights into the rationale behind the recommendation for a two-stage estimation approach, emphasizing the separate estimation of coefficients in the mean and variance equations. The results presented in this paper indicate that Stochastic Volatility models, particularly SARV models, outperform MS-GARCH models in forecasting Bitcoin price volatility. Moreover, the study suggests that in certain situations, persistent simple GARCH models may even outperform Markov-Switching GARCH models in predicting the variance of Bitcoin log returns. These findings offer valuable guidance for risk management experts, highlighting the potential advantages of SARV models in managing and forecasting Bitcoin price volatility. ...

January 7, 2024 · 2 min · Research Team