false

Kendall Correlation Coefficients for Portfolio Optimization

Kendall Correlation Coefficients for Portfolio Optimization ArXiv ID: 2410.17366 “View on arXiv” Authors: Unknown Abstract Markowitz’s optimal portfolio relies on the accurate estimation of correlations between asset returns, a difficult problem when the number of observations is not much larger than the number of assets. Using powerful results from random matrix theory, several schemes have been developed to “clean” the eigenvalues of empirical correlation matrices. By contrast, the (in practice equally important) problem of correctly estimating the eigenvectors of the correlation matrix has received comparatively little attention. Here we discuss a class of correlation estimators generalizing Kendall’s rank correlation coefficient which improve the estimation of both eigenvalues and eigenvectors in data-poor regimes. Using both synthetic and real financial data, we show that these generalized correlation coefficients yield Markowitz portfolios with lower out-of-sample risk than those obtained with rotationally invariant estimators. Central to these results is a property shared by all Kendall-like estimators but not with classical correlation coefficients: zero eigenvalues only appear when the number of assets becomes proportional to the square of the number of data points. ...

October 22, 2024 · 2 min · Research Team

Efficient Solution of Portfolio Optimization Problems via Dimension Reduction and Sparsification

Efficient Solution of Portfolio Optimization Problems via Dimension Reduction and Sparsification ArXiv ID: 2306.12639 “View on arXiv” Authors: Unknown Abstract The Markowitz mean-variance portfolio optimization model aims to balance expected return and risk when investing. However, there is a significant limitation when solving large portfolio optimization problems efficiently: the large and dense covariance matrix. Since portfolio performance can be potentially improved by considering a wider range of investments, it is imperative to be able to solve large portfolio optimization problems efficiently, typically in microseconds. We propose dimension reduction and increased sparsity as remedies for the covariance matrix. The size reduction is based on predictions from machine learning techniques and the solution to a linear programming problem. We find that using the efficient frontier from the linear formulation is much better at predicting the assets on the Markowitz efficient frontier, compared to the predictions from neural networks. Reducing the covariance matrix based on these predictions decreases both runtime and total iterations. We also present a technique to sparsify the covariance matrix such that it preserves positive semi-definiteness, which improves runtime per iteration. The methods we discuss all achieved similar portfolio expected risk and return as we would obtain from a full dense covariance matrix but with improved optimizer performance. ...

June 22, 2023 · 2 min · Research Team