false

Portfolio optimization in incomplete markets and price constraints determined by maximum entropy in the mean

Portfolio optimization in incomplete markets and price constraints determined by maximum entropy in the mean ArXiv ID: 2507.07053 “View on arXiv” Authors: Argimiro Arratia, Henryk Gzyl Abstract A solution to a portfolio optimization problem is always conditioned by constraints on the initial capital and the price of the available market assets. If a risk neutral measure is known, then the price of each asset is the discounted expected value of the asset’s price under this measure. But if the market is incomplete, the risk neutral measure is not unique, and there is a range of possible prices for each asset, which can be identified with bid-ask ranges. We present in this paper an effective method to determine the current prices of a collection of assets in incomplete markets, and such that these prices comply with the cost constraints for a portfolio optimization problem. Our workhorse is the method of maximum entropy in the mean to adjust a distortion function from bid-ask market data. This distortion function plays the role of a risk neutral measure, which is used to price the assets, and the distorted probability that it determines reproduces bid-ask market values. We carry out numerical examples to study the effect on portfolio returns of the computation of prices of the assets conforming the portfolio with the proposed methodology. ...

July 3, 2025 · 2 min · Research Team

Path Shadowing Monte-Carlo

Path Shadowing Monte-Carlo ArXiv ID: 2308.01486 “View on arXiv” Authors: Unknown Abstract We introduce a Path Shadowing Monte-Carlo method, which provides prediction of future paths, given any generative model. At any given date, it averages future quantities over generated price paths whose past history matches, or shadows', the actual (observed) history. We test our approach using paths generated from a maximum entropy model of financial prices, based on a recently proposed multi-scale analogue of the standard skewness and kurtosis called Scattering Spectra’. This model promotes diversity of generated paths while reproducing the main statistical properties of financial prices, including stylized facts on volatility roughness. Our method yields state-of-the-art predictions for future realized volatility and allows one to determine conditional option smiles for the S&P500 that outperform both the current version of the Path-Dependent Volatility model and the option market itself. ...

August 3, 2023 · 2 min · Research Team