false

Testing for the Minimum Mean-Variance Spanning Set

Testing for the Minimum Mean-Variance Spanning Set ArXiv ID: 2501.19213 “View on arXiv” Authors: Unknown Abstract This paper explores the estimation and inference of the minimum spanning set (MSS), the smallest subset of risky assets that spans the mean-variance efficient frontier of the full asset set. We establish identification conditions for the MSS and develop a novel procedure for its estimation and inference. Our theoretical analysis shows that the proposed MSS estimator covers the true MSS with probability approaching 1 and converges asymptotically to the true MSS at any desired confidence level, such as 0.95 or 0.99. Monte Carlo simulations confirm the strong finite-sample performance of the MSS estimator. We apply our method to evaluate the relative importance of individual stock momentum and factor momentum strategies, along with a set of well-established stock return factors. The empirical results highlight factor momentum, along with several stock momentum and return factors, as key drivers of mean-variance efficiency. Furthermore, our analysis uncovers the sources of contribution from these factors and provides a ranking of their relative importance, offering new insights into their roles in mean-variance analysis. ...

January 31, 2025 · 2 min · Research Team

Consistent Estimation of the High-Dimensional Efficient Frontier

Consistent Estimation of the High-Dimensional Efficient Frontier ArXiv ID: 2409.15103 “View on arXiv” Authors: Unknown Abstract In this paper, we analyze the asymptotic behavior of the main characteristics of the mean-variance efficient frontier employing random matrix theory. Our particular interest covers the case when the dimension $p$ and the sample size $n$ tend to infinity simultaneously and their ratio $p/n$ tends to a positive constant $c\in(0,1)$. We neither impose any distributional nor structural assumptions on the asset returns. For the developed theoretical framework, some regularity conditions, like the existence of the $4$th moments, are needed. It is shown that two out of three quantities of interest are biased and overestimated by their sample counterparts under the high-dimensional asymptotic regime. This becomes evident based on the asymptotic deterministic equivalents of the sample plug-in estimators. Using them we construct consistent estimators of the three characteristics of the efficient frontier. It it shown that the additive and/or the multiplicative biases of the sample estimates are solely functions of the concentration ratio $c$. Furthermore, the asymptotic normality of the considered estimators of the parameters of the efficient frontier is proved. Verifying the theoretical results based on an extensive simulation study we show that the proposed estimator for the efficient frontier is a valuable alternative to the sample estimator for high dimensional data. Finally, we present an empirical application, where we estimate the efficient frontier based on the stocks included in S&P 500 index. ...

September 23, 2024 · 2 min · Research Team