false

Tracing Positional Bias in Financial Decision-Making: Mechanistic Insights from Qwen2.5

Tracing Positional Bias in Financial Decision-Making: Mechanistic Insights from Qwen2.5 ArXiv ID: 2508.18427 “View on arXiv” Authors: Fabrizio Dimino, Krati Saxena, Bhaskarjit Sarmah, Stefano Pasquali Abstract The growing adoption of large language models (LLMs) in finance exposes high-stakes decision-making to subtle, underexamined positional biases. The complexity and opacity of modern model architectures compound this risk. We present the first unified framework and benchmark that not only detects and quantifies positional bias in binary financial decisions but also pinpoints its mechanistic origins within open-source Qwen2.5-instruct models (1.5B-14B). Our empirical analysis covers a novel, finance-authentic dataset revealing that positional bias is pervasive, scale-sensitive, and prone to resurfacing under nuanced prompt designs and investment scenarios, with recency and primacy effects revealing new vulnerabilities in risk-laden contexts. Through transparent mechanistic interpretability, we map how and where bias emerges and propagates within the models to deliver actionable, generalizable insights across prompt types and scales. By bridging domain-specific audit with model interpretability, our work provides a new methodological standard for both rigorous bias diagnosis and practical mitigation, establishing essential guidance for responsible and trustworthy deployment of LLMs in financial systems. ...

August 25, 2025 · 2 min · Research Team

Beyond the Black Box: Interpretability of LLMs in Finance

Beyond the Black Box: Interpretability of LLMs in Finance ArXiv ID: 2505.24650 “View on arXiv” Authors: Hariom Tatsat, Ariye Shater Abstract Large Language Models (LLMs) exhibit remarkable capabilities across a spectrum of tasks in financial services, including report generation, chatbots, sentiment analysis, regulatory compliance, investment advisory, financial knowledge retrieval, and summarization. However, their intrinsic complexity and lack of transparency pose significant challenges, especially in the highly regulated financial sector, where interpretability, fairness, and accountability are critical. As far as we are aware, this paper presents the first application in the finance domain of understanding and utilizing the inner workings of LLMs through mechanistic interpretability, addressing the pressing need for transparency and control in AI systems. Mechanistic interpretability is the most intuitive and transparent way to understand LLM behavior by reverse-engineering their internal workings. By dissecting the activations and circuits within these models, it provides insights into how specific features or components influence predictions - making it possible not only to observe but also to modify model behavior. In this paper, we explore the theoretical aspects of mechanistic interpretability and demonstrate its practical relevance through a range of financial use cases and experiments, including applications in trading strategies, sentiment analysis, bias, and hallucination detection. While not yet widely adopted, mechanistic interpretability is expected to become increasingly vital as adoption of LLMs increases. Advanced interpretability tools can ensure AI systems remain ethical, transparent, and aligned with evolving financial regulations. In this paper, we have put special emphasis on how these techniques can help unlock interpretability requirements for regulatory and compliance purposes - addressing both current needs and anticipating future expectations from financial regulators globally. ...

May 14, 2025 · 2 min · Research Team