false

Estimation of bid-ask spreads in the presence of serial dependence

Estimation of bid-ask spreads in the presence of serial dependence ArXiv ID: 2407.17401 “View on arXiv” Authors: Unknown Abstract Starting from a basic model in which the dynamic of the transaction prices is a geometric Brownian motion disrupted by a microstructure white noise, corresponding to the random alternation of bids and asks, we propose moment-based estimators along with their statistical properties. We then make the model more realistic by considering serial dependence: we assume a geometric fractional Brownian motion for the price, then an Ornstein-Uhlenbeck process for the microstructure noise. In these two cases of serial dependence, we propose again consistent and asymptotically normal estimators. All our estimators are compared on simulated data with existing approaches, such as Roll, Corwin-Schultz, Abdi-Ranaldo, or Ardia-Guidotti-Kroencke estimators. ...

July 24, 2024 · 2 min · Research Team

Probabilistic models and statistics for electronic financial markets in the digital age

Probabilistic models and statistics for electronic financial markets in the digital age ArXiv ID: 2406.07388 “View on arXiv” Authors: Unknown Abstract The scope of this manuscript is to review some recent developments in statistics for discretely observed semimartingales which are motivated by applications for financial markets. Our journey through this area stops to take closer looks at a few selected topics discussing recent literature. We moreover highlight and explain the important role played by some classical concepts of probability and statistics. We focus on three main aspects: Testing for jumps; rough fractional stochastic volatility; and limit order microstructure noise. We review jump tests based on extreme value theory and complement the literature proposing new statistical methods. They are based on asymptotic theory of order statistics and the Rényi representation. The second stage of our journey visits a recent strand of research showing that volatility is rough. We further investigate this and establish a minimax lower bound exploring frontiers to what extent the regularity of latent volatility can be recovered in a more general framework. Finally, we discuss a stochastic boundary model with one-sided microstructure noise for high-frequency limit order prices and its probabilistic and statistical foundation. ...

June 11, 2024 · 2 min · Research Team

Jump detection in high-frequency order prices

Jump detection in high-frequency order prices ArXiv ID: 2403.00819 “View on arXiv” Authors: Unknown Abstract We propose methods to infer jumps of a semi-martingale, which describes long-term price dynamics, based on discrete, noisy, high-frequency observations. Different to the classical model of additive, centered market microstructure noise, we consider one-sided microstructure noise for order prices in a limit order book. We develop methods to estimate, locate and test for jumps using local minima of best ask quotes. We provide a local jump test and show that we can consistently estimate jump sizes and jump times. One main contribution is a global test for jumps. We establish the asymptotic properties and optimality of this test. We derive the asymptotic distribution of a maximum statistic under the null hypothesis of no jumps based on extreme value theory. We prove consistency under the alternative hypothesis. The rate of convergence for local alternatives is determined and shown to be much faster than optimal rates for the standard market microstructure noise model. This allows the identification of smaller jumps. In the process, we establish uniform consistency for spot volatility estimation under one-sided noise. Online jump detection based on the new approach is shown to achieve a speed advantage compared to standard methods applied to mid quotes. A simulation study sheds light on the finite-sample implementation and properties of the new approach and draws a comparison to a popular method for market microstructure noise. We showcase how our new approach helps to improve jump detection in an empirical analysis of intra-daily limit order book data. ...

February 26, 2024 · 2 min · Research Team