false

Variable selection for minimum-variance portfolios

Variable selection for minimum-variance portfolios ArXiv ID: 2508.14986 “View on arXiv” Authors: Guilherme V. Moura, André P. Santos, Hudson S. Torrent Abstract Machine learning (ML) methods have been successfully employed in identifying variables that can predict the equity premium of individual stocks. In this paper, we investigate if ML can also be helpful in selecting variables relevant for optimal portfolio choice. To address this question, we parameterize minimum-variance portfolio weights as a function of a large pool of firm-level characteristics as well as their second-order and cross-product transformations, yielding a total of 4,610 predictors. We find that the gains from employing ML to select relevant predictors are substantial: minimum-variance portfolios achieve lower risk relative to sparse specifications commonly considered in the literature, especially when non-linear terms are added to the predictor space. Moreover, some of the selected predictors that help decreasing portfolio risk also increase returns, leading to minimum-variance portfolios with good performance in terms of Shape ratios in some situations. Our evidence suggests that ad-hoc sparsity can be detrimental to the performance of minimum-variance characteristics-based portfolios. ...

August 20, 2025 · 2 min · Research Team

End-to-End Large Portfolio Optimization for Variance Minimization with Neural Networks through Covariance Cleaning

End-to-End Large Portfolio Optimization for Variance Minimization with Neural Networks through Covariance Cleaning ArXiv ID: 2507.01918 “View on arXiv” Authors: Christian Bongiorno, Efstratios Manolakis, Rosario Nunzio Mantegna Abstract We develop a rotation-invariant neural network that provides the global minimum-variance portfolio by jointly learning how to lag-transform historical returns and how to regularise both the eigenvalues and the marginal volatilities of large equity covariance matrices. This explicit mathematical mapping offers clear interpretability of each module’s role, so the model cannot be regarded as a pure black-box. The architecture mirrors the analytical form of the global minimum-variance solution yet remains agnostic to dimension, so a single model can be calibrated on panels of a few hundred stocks and applied, without retraining, to one thousand US equities-a cross-sectional jump that demonstrates robust out-of-sample generalisation. The loss function is the future realized minimum portfolio variance and is optimized end-to-end on real daily returns. In out-of-sample tests from January 2000 to December 2024 the estimator delivers systematically lower realised volatility, smaller maximum drawdowns, and higher Sharpe ratios than the best analytical competitors, including state-of-the-art non-linear shrinkage. Furthermore, although the model is trained end-to-end to produce an unconstrained (long-short) minimum-variance portfolio, we show that its learned covariance representation can be used in general optimizers under long-only constraints with virtually no loss in its performance advantage over competing estimators. These gains persist when the strategy is executed under a highly realistic implementation framework that models market orders at the auctions, empirical slippage, exchange fees, and financing charges for leverage, and they remain stable during episodes of acute market stress. ...

July 2, 2025 · 2 min · Research Team

High-dimensional covariance matrix estimators on simulated portfolios with complex structures

High-dimensional covariance matrix estimators on simulated portfolios with complex structures ArXiv ID: 2412.08756 “View on arXiv” Authors: Unknown Abstract We study the allocation of synthetic portfolios under hierarchical nested, one-factor, and diagonal structures of the population covariance matrix in a high-dimensional scenario. The noise reduction approaches for the sample realizations are based on random matrices, free probability, deterministic equivalents, and their combination with a data science hierarchical method known as two-step covariance estimators. The financial performance metrics from the simulations are compared with empirical data from companies comprising the S&P 500 index using a moving window and walk-forward analysis. The portfolio allocation strategies analyzed include the minimum variance portfolio (both with and without short-selling constraints) and the hierarchical risk parity approach. Our proposed hierarchical nested covariance model shows signatures of complex system interactions. The empirical financial data reproduces stylized portfolio facts observed in the complex and one-factor covariance models. The two-step estimators proposed here improve several financial metrics under the analyzed investment strategies. The results pave the way for new risk management and diversification approaches when the number of assets is of the same order as the number of transaction days in the investment portfolio. ...

December 11, 2024 · 2 min · Research Team

Shocks-adaptive Robust Minimum Variance Portfolio for a Large Universe of Assets

Shocks-adaptive Robust Minimum Variance Portfolio for a Large Universe of Assets ArXiv ID: 2410.01826 “View on arXiv” Authors: Unknown Abstract This paper proposes a robust, shocks-adaptive portfolio in a large-dimensional assets universe where the number of assets could be comparable to or even larger than the sample size. It is well documented that portfolios based on optimizations are sensitive to outliers in return data. We deal with outliers by proposing a robust factor model, contributing methodologically through the development of a robust principal component analysis (PCA) for factor model estimation and a shrinkage estimation for the random error covariance matrix. This approach extends the well-regarded Principal Orthogonal Complement Thresholding (POET) method (Fan et al., 2013), enabling it to effectively handle heavy tails and sudden shocks in data. The novelty of the proposed robust method is its adaptiveness to both global and idiosyncratic shocks, without the need to distinguish them, which is useful in forming portfolio weights when facing outliers. We develop the theoretical results of the robust factor model and the robust minimum variance portfolio. Numerical and empirical results show the superior performance of the new portfolio. ...

September 16, 2024 · 2 min · Research Team

High-Dimensional Mean-Variance Spanning Tests

High-Dimensional Mean-Variance Spanning Tests ArXiv ID: 2403.17127 “View on arXiv” Authors: Unknown Abstract We introduce a new framework for the mean-variance spanning (MVS) hypothesis testing. The procedure can be applied to any test-asset dimension and only requires stationary asset returns and the number of benchmark assets to be smaller than the number of time periods. It involves individually testing moment conditions using a robust Student-t statistic based on the batch-mean method and combining the p-values using the Cauchy combination test. Simulations demonstrate the superior performance of the test compared to state-of-the-art approaches. For the empirical application, we look at the problem of domestic versus international diversification in equities. We find that the advantages of diversification are influenced by economic conditions and exhibit cross-country variation. We also highlight that the rejection of the MVS hypothesis originates from the potential to reduce variance within the domestic global minimum-variance portfolio. ...

March 25, 2024 · 2 min · Research Team